Office for Outer Space Affairs
UN-SPIDER Knowledge Portal
Help Shape the Future of the UN-SPIDER Knowledge Portal
The UN-SPIDER Knowledge Portal is your one-stop platform for resources on space-based disaster risk management. It provides: • Links and guidance on satellite data sources and applications • Recommended practices and step-by-step methodologies • Training materials and tutorials • Case studies and user stories from real-world applications • News and updates on UN-SPIDER activities, events, and global developments
Since its last major review in 2012, the Portal has evolved significantly. Now, we want to hear from you.
We invite you to take part in the 2025 evaluation of the UN-SPIDER Knowledge Portal!
Large‐Area Morphological Characterization of Urban Environments for Exposure Modelling
To support exposure modelling by providing large-area information about the physical morphology of urban environments, a fully automated processing chain based on imagery of the satellite mission Sentinel-2, operated by the European Space Agency (ESA) in the frame of the European Union Copernicus Programme, and of the German satellite mission TanDEM-X is being developed for applications in disaster risk reduction worldwide.
Recent earth observation missions feature a notable tradeoff between a fairly high spatial resolution and large-area coverage. In particular, the TanDEM-X mission is a spaceborne radar interferometer which delivers a global digital surface model with an unprecedented pixel spacing of 0.4 arc seconds (~12m). In addition, ESA’s recently launched Sentinel-2 satellites provide multispectral imagery with a spatial resolution of 10m for the bands covering visible light and near-infrared and a repetition rate with the current constellation of two satellites of about 5 days. The developed workflow comprises three main modules. The first module relies on the so-called Global Urban Footprint, which provides binary information on “built-up” and “non built-up” areas. The second module comprises the derivation of height information of objects in urban environments from the digital surface model generated by the TanDEM-X mission. The third module contains the computation of the features that are used for characterization of the urban morphology using Sentinel-2 imagery. The final output comprises built-up heights and share of built-up areas of urban environments.
Derivation of built-up heights and built-up densities, which can serve as key proxies for exposure patterns.
This initiative aims at quantitatively characterizing urban environments without the incorporation of prior knowledge and a priori determination of thematic classes according to specific semantics. This is done to allow for consistent and automated large-area analysis. Moreover, this way, local peculiarities are bypassed, and a more objective statistical description of settlements is provided. Such a quantitative characterization can be transferred into thematic classes a posteriori and allows also for a targeted collection of in situ knowledge for specific applications in exposure mapping.
Geiß, C., Wurm, M., Taubenböck, H. (2017) Towards a large-area morphologic characterization of urban environments using the TanDEM-X mission and Sentinel-2, JURSE 2017 - Joint Urban Remote Sensing Event, pp. pending. Joint Urban Remote Sensing Event, 6.-8. March 2017, Dubai, United Arab Emirates.
Geiß, C., Wurm, M., Breunig, M., Felbier, A., and Taubenböck, H. (2015): Normalization of TanDEM-X DSM Data in Urban Environments with Morphological Filters. IEEE Transactions on Geoscience and Remote Sensing, 53(8), 4348-4362.