Earthquake

Recommended Practice: Disaster Preparedness Using Free Software Extensions

English

Teaser Recommended Practice: 

Remote sensing technologies can support all stages of the disaster management cycle. In the prevention and preparedness phases, they often find their application in risk assessments, scenario modelling and early warning. This UN-SPIDER Recommended Practice explains how remote sensing data about recurring floods, information about infrastructure and socio-economic data can be integrated using free and open source software to support prevention and preparedness efforts. It makes use, among others, of the InaSAFE plug-in for the desktop GIS software QGIS to estimate the number of people and infrastructure potentially affected by a 100-year flood. The resulting insights can be used to contingency planning and related efforts before a disaster strikes.

Flowchart Recommended Practices: 

Related Software: 

Objective: 

The objective of this step-by-step procedure is to identify potentially damaged buildings and streets, as well the number of potentially displaced persons for two different flood events in Africa. This information can be used for future contingency planning and to improve the design of preventive measures.

Disaster Cycle Phase: 

  • Preparedness

Main Hazards: 

  • Earthquake
  • Flood
  • Tsunami
  • Volcanic Eruption

Test Site: 

This Recommended Practice has been applied to flood scenarios in Mozambique and Ghana.

Context: 

The presented QGIS plug-in was developed jointly by the Indonesian Disaster Management Organization (BNPB), the Australian Government and the World Bank (GFDRR). It was created as free and open source software (FOSS) and is available in the QGIS plug-in library. The use cases provided on the website of InaSAFAE are primarily related to disasters in Indonesia such as floods in the city of Jakarta. For this Recommended Practice, two use cases in Africa have been chosen. The first one focuses on a past flood event in Beira, Mozambique, whereas the second one addresses the larger area of Accra, Ghana, and makes use of a 100-year returning flood layer from the Global Flood Awareness System (GloFAS) of the Joint Research Center (JRC) of the European Commission (EC).

Applicability: 

Both case studies provided show several options to adapt the calculations to other case studies. However, the plugIn does not give the exact number of people as the calculations are rather basic. This allows for faster processing, but also means that values are only an estimate of the expected damage and never an exact number. This practice should raise awareness about risk prevention and provide incentives to improve preparation and planning processes.

Myanmar - Institutional Strengthening Mission

UN-SPIDER conducted a Institutional Strengthening Mission (ISM) in Myanmar from 28 March to 2 April 2017. The activity was a follow-up to the technical advisory mission conducted in March 2012, which was aimed at improving the utilization of space-based and geospatial information in all stages of disaster management. In November 2012, UN-SPIDER visited Myanmar to disseminate the report of the technical advisory mission and offered a training course on geo-informatics for disaster risk management in collaboration with the International Centre for Integrated Mountain Development (ICIMOD). As a follow-up activity aimed at taking account of the progress realized since 2012, UN-SPIDER revisited Myanmar in June 2016 and held a high-level advocacy meeting of stakeholders and a training course on Earth observation technologies for landslide hazard and risk assessment.

 

Dates: 

Tue, 28/03/2017 to Sun, 02/04/2017

Country/Region: 

Main Hazards: 

Mission Profile: 

The ISM included a training programme that was jointly conducted with the United Nations Human Settlements Programme (UN-Habitat) and the Centre for Space Science and Technology Education in Asia and the Pacific in collaboration with the Ministry of Social Welfare, Relief and Resettlement of Myanmar; the Myanmar Engineering Society; and the Myanmar Earthquake Committee. It was hosted at Yangon Technological University and attended by 40 participants from various organizations. The training course included theory-based and interactive sessions, which covered topics such as the role of Earth observation in providing critical information and rapid mapping during and following earthquakes; visual interpretation, object-oriented segmentation and classification to facilitate change detection based on very high-resolution satellite imagery; semi-automated techniques to extract information on buildings and other infrastructure and integrating it with population and risk data to evaluate casualties and losses; crowd-source platforms to use Earth observation to perform rapid assessment; and advanced techniques to access satellite images during emergencies. 

Disaster type: 

Myanmar - Institutional Strengthening Mission

As part of the technical advisory support it provides to countries worldwide, UN-SPIDER carried out an Institutional Strengthening Mission to Myanmar from 11 to 15 March 2019 upon the request of the government. This activity was jointly organized by UN-SPIDER and the United Nations Human Settlement Programme (UN-Habitat), under auspices of the Ministry of Social Welfare, Relief and Resettle­ment (MSWRR) of Myanmar. It was hosted by the Emergency Operation Centre (EOC). 

Dates: 

Mon, 11/03/2019 to Fri, 15/03/2019

Host Institution: 

Emergency Operation Centre (EOC)

Country/Region: 

Main Hazards: 

Mission Team: 

Representatives from UN-SPIDER, the United Nations Human Settlement Programme (UN-Habitat), the Ministry of Social Welfare, Relief and Resettle­ment (MSWRR) of Myanmar, the Emergency Operation Centre (EOC), the Centre for Space Science and Technology Education in Asia and the Pacific (CSSTEAP), the International Centre for Integrated Mountain Development (ICIMOD) and Maxar.

Mission Profile: 

The mission was a follow-up activity to the UN-SPIDER Technical Advisory Mission (TAM) conducted in March 2012 that assessed the use of space-derived information in all aspects of disaster management and provided recommendations to strengthen the disaster risk management and emergency response in Myanmar. Before this follow-up activity, UN-SPIDER organized three such activities and offered capacity building programmes on “Geo-informatics for Disaster Risk Management in Myanmar” in November 2012, “Use of Earth Observation Data and GIS Techniques for Landslide Hazard Mapping” in June 2016 and “Post Disaster (Earthquake) Rapid Damage Assessment” in March 2017.

During the five-day mission, UN-SPIDER held a high-level advocacy meeting at ministerial level and carried out two training programmes, one for 25 officials of the Department of Disaster Management (DDM) of MSWRR and one for 25 officials from key line ministries.

Mission Outcome: 

The training for DDM staff provided an overview of the use of space technology in disaster risk management, the International Charter “Space and Major Disasters” and coordination during an emergency situation. The course strengthened the skills of EOC and DDM staff in analyzing maps and making use of emergency response maps produced as part of International Charter activations.

The training for officials from key line ministries was more comprehensive and covered a wide range of theory and hands-on session for using Earth observation technologies and tools for flood and earthquake disaster response.

The five-day-long institutional strengthening mission improved the capacity of using space-based technologies for sustainable development and disaster management of more than 50 participants and deepened the engagement of UN-SPIDER with MSWRR, EOC, United Nations agencies and other stakeholders in the country.

Disaster type: 

Tunisia - Technical Advisory Mission

At the request of, and in coordination with the National Civil Protection Office of Tunisia, UN-SPIDER is conducting a Technical Advisory Mission to Tunisia from 4 to 6 March 2020 to identify the needs of the country to fully take advantage of space-based information for disaster management. In order to discuss the use of space-based information for risk and disaster management to subsequently make recommendations on improvements, the expert team meets with key disaster management authorities in the country.

The mission is conducted with the support of experts from the Algerian Space Agency (ASAL); the Romanian Space Agency (ROSA); the United Nations Economic Commission for Africa (UNECA); the National Observatory of Athens (NOA); and an expert on the Copernicus Emergency Management Service. The mission team is also benefiting from the support of the Chief of Space Applications of the United Nations Office for Outer Space Affairs.

As part of the mission, the team of experts will visit several institutions including the National Office of Civil Protection; the Directorate General for Forests of the Ministry of Agriculture; the Faculty of Sciences of Tunis, University of Tunis El Manar; the National Agronomic Institute of Tunisia; the National Institute of Meteorology; as well as at the Ministry of Local Affairs and Environment. Meetings will also be conducted with representatives of the National Cartographic and Remote Sensing Centre of Tunisia and other organizations. In addition, the TAM team will meet the United Nations Country Team in Tunisia, which supports disaster management efforts in the country.

During the TAM, a workshop with over 20 participants from nine institutions will take place in order to present the UN-SPIDER programme to Tunisian counterparts involved in disaster management, and encourage inter-institutional cooperation and sharing of geospatial information among them.

UN-SPIDER aims at ensuring all countries have the capacity to use all types of space-based information to support risk and disaster management efforts. To make sure that all interested stakeholders can benefit from this information in the most effective way possible, UN-SPIDER provides Technical Advisory Support to Member States through missions such as this one.

The Algerian Space Agency (ASAL), the Romanian Space Agency (ROSA) and the National Observatory of Athens (NOA) are UN-SPIDER Regional Support Office.

Dates: 

Wed, 04/03/2020 to Fri, 06/03/2020

Host Institution: 

National Office for Civil Protection (ONPC), Ministry of the Interior of Tunisia

Country/Region: 

Mission Team: 

  • Alexandru Badea, Romanian Space Agency (ROSA)
  • Kamel Tichouiti, Algerian Space Agency (ASAL)
  • Alexia Tsouni, National Observatory of Athens (NOA)
  • Francoise Villette, Expert on Earth observation and disaster management, and on Copernicus EMS
  • Luc St-Pierre, United Nations Office for Outer Space Affairs (UNOOSA)
  • Coen Bussink, UN-SPIDER (Head of Delegation)
  • Radu Botez, UN-SPIDER

Mission Profile: 

Three-day mission with a stakeholder workshop that brought together 21 participants from 13 Tunisian institutions, in addition to the mission team.

AttachmentSize
PDF icon Tunisia TAM - Data sources booklet969.11 KB

Recommended Practice: Earthquake Urban Damage Detection Using Sentinel-1 Data

English

Teaser Recommended Practice: 

On 12 November 2017 a 7.3 magnitude earthquake struck close to the town of Sarpol-e-Zahab in the Kermanshah province of the Islamic Republic of Iran. The earthquake ranked as the strongest of 2017 and among the deadliest for the decade, killing over 600 people. Fatalities were spread across the border province and destruction of local infrastructure, healthcare centers and emergency services made response harder. This Recommended Practice will outline the process for obtaining and processing SAR data before and after the 2017 earthquake for the purpose of creating actionable and helpful maps for disaster managers to make informed decisions.

Objective: 

The aim is to identify buildings based on their high backscatter from SAR sensors. This identification process will be applied both before and after the earthquake to highlight areas of major building change (i.e. destruction). The information will then be overlaid over relevant open-source information to produce useful maps for disaster stakeholders such as major street blockages and heavily hit neighborhoods.

Disaster Cycle Phase: 

  • Recovery & Reconstruction
  • Relief & Response

Main Hazards: 

  • Earthquake

Test Site: 

Kermanshah, Kermanshah Province, Islamic Republic of Iran

Context: 

This Recommended Practice was developed by UN-SPIDER for the case of Kermanshah, Islamic Republic of Iran. The major earthquake that struck there in 2017 killed over 600 people in the province. Overall, 12,000 buildings were damaged, as shown by amateur footage shared after the event. This Recommended Practice can support the disaster management activities such as emergency response during or immediately after a disaster event in order to provide spatial information about impact in the urban infrastructure or people affected.

For first responders, knowledge of which streets were blocked by rubble, is key to saving time and lives. Two years after the quake, nearly 5,000 people still found themselves unable to return to their homes; (Yousefi et al., 2018) during the disaster recovery phase, information about which areas were affected most could help disaster managers in their efforts to prioritize aid and rebuild quickly.

Applicability: 

This Recommended Practice can be used with any SAR images of urban areas. For this practice, the Copernicus Programme’s Sentinel-1 satellite data is used. The selected data has a polarization of VV VH, in preprocessing only VV will be singled out, which has the clearest results for differentiation of urban and infrastructure areas from other areas. (Deepthi et al., 2018) It is necessary for the before and after images to have the same orbit direction (ascending or descending), it is beneficial if they have the same or close orbit tracks (relative orbit numbers).

This methodology can be applied to urban areas with large building destruction. Errors can be introduced as outside debris enters the area or flooding occurs, thus it is not recommended for hurricanes, tornadoes or tsunamis. Errors can also be introduced through precipitation change or vegetation growth, thus knowing the urban-agricultural layout of the region of interest and knowing about major snowfall or rain in the time range is important to avoid errors.

Peru - Technical Advisory Mission

As part of it advisory support activities, UN-SPIDER is carrying out out a Technical Advisory Mission (TAM) to Peru from 1 to 5 April to evaluate the current and potential use of space-based information in all aspects of disaster management. Based on exchanges with a wide range of stakeholders, UN-SPIDER will provide recommendations as to how to strengthen the use of space-based information in disaster risk management and emergency response in the country.

Dates: 

Mon, 01/04/2019 to Fri, 05/04/2019

Host Institution: 

National Institute of Civil Defense (INDECI) of Peru and National Commission of Aerospace Research and Development of Peru (CONIDA).

Country/Region: 

Mission Team: 

The team is comprised of eight experts from UN-SPIDER; the German Aerospace Centre (DLR); the Argentinian National Space Activities Commission (CONAE); the Mexican Space Agency (AEM); the Agustin Codazzi Geographic Institute of Colombia (IGAC); the Santa Ana Federal University of Brazil; the National Aeronautics and Space Administration (NASA) of the United States of America; and the Andean Community (CAN). CONAE, AEM and IGAC are UN-SPIDER Regional Support Offices.

Mission Profile: 

The team had a series of meetings with key stakeholder organizations to take account of the availability of geospatial information, current use of space-derived information, data sharing practices, applications of geospatial information, challenges and constraints, existing capacity and needs, institutional linkages and coordination and applications to strengthen disaster risk reduction and emergency response.

 

Nepal - Technical Advisory Mission

At the request of the Ministry of Home Affairs (MoHA) and with the technical support of the International Center for Integrated Mountain Development (ICIMOD), UN-SPIDER carried out a Technical Advisory Mission (TAM) to Nepal to evaluate the current and potential use of space based information in all aspects of disaster management and offering recommendations to strengthen disaster risk management and emergency response in the country.

Dates: 

Mon, 31/07/2017 to Fri, 04/08/2017

Host Institution: 

Ministry of Home Affairs (MoHA)

Country/Region: 

Main Hazards: 

Mission Team: 

The team of 11 experts, under the leadership of the United Nations Office for Outer Space Affairs (UNOOSA)/UN-SPIDER), visited NEPAL from 31 July to 4 August 2017. The mission team represented the following organizations: UNOOSA/UN-SPIDER, ICIMOD, Chinese Academy of Sciences, United Nations Office for the Coordination of Humanitarian Affairs (UNOCHA), United Nations Development Programme (UNDP), Center for Interdisciplinary Geospatial Technology of Delta State University, United Nations Affiliated Centre for Space Science and Technology Education for Asia and the Pacific hosted by Indian Space Research Organisation and DigitalGlobe, Singapore.

Mission Profile: 

During the five-day mission, the mission team visited key stakeholder agencies to carry out in-depth discussions on the current and potential use of space based information in all aspects of disaster management and offering recommendations to strengthen the disaster risk management and emergency response in the country. A one-day workshop was conducted as a part of this mission, which was attended by more than 65 participants. On the fifth day, the mission team compiled and presented their observations and recommendations to high-level officials of the MoHA, United Nations Resident Coordinator’s Office (UN-RCO) and other key stakeholders.

Mission Findings: 

Policy

  • Many agencies visited have incorporated GIS and remote sensing in their activities. However it seems rather ad hoc and not guided by an overall policy for using space based technology for DRR and DM.
  • Data provision from different agencies is fragmented and lacks clear policy and responsibilities for data generation, maintenance and update.
  • Critical is the missing NSDI and related activities. Access to data due to inadequate policy framing has been highlighted several times as a crucial issue to advance DRR related activities.
  • National Strategy for Disaster Risk Management NSDRM 2009 Priority Action 2 (Identify, assess and monitor disaster risks and strengthen early warning System) relates to “Establish and institutionalize authentic, and open GIS-based Disaster Information Management System (DIMS) at all levels).
  • Natural Calamity (Relief) Act, 1982 is under revision which provides opportunities to integrate the use of space based information in line with the Sendai Framework.

Data availability and sharing

  • ICIMOD is well placed to access earth observation data through SERVIR, Sentinel Asia and other programmes. Some agencies have UAVs.
  • There is no national agency responsible for driving remote sensing based progammes.
  • Baseline GIS data is available, although it is not clear how data is shared, used and its quality. This restricts interoperability among the GIS layers developed by various organizations.
  • This data gap is filled with open street map data and other separate initiatives.
  • A lot of valuable geospatial data is available and more are being collected, however, there is a lack of data standards, metadata and data accessibility mainly due to lack of policy guidelines, appropriate software and hardware issues.
  • Departments are unable or not forthcoming to share data. Data is not posted publicly and is usually shared on an ad-hoc and informal basis due to lack of policy guidelines.
  • There are no targeted missions to generate hazard, and risk maps. Such gap is filled by many non government actors. Use of EO based input is minimal.

Capacity Building and Institutional Strengthening

  • CSSTEAP has over 100 alumni in Nepal trained in RS/GIS, SatCom, SatMetetc. Several others are trained in the other institutions.
  • Trained staff cannot make use of their capacities due to limitations in policy framing (except Nepalese Army and APF).
  • Capacity building should be guided by a strategy that addresses long-term capacity building needs;
  • Additionally danger exists that staff cannot upgrade and refresh their capacities as they are losing the connection to state-of-the-art knowledge.
  • Government institutions involved in geospatial technologies have not adequately planned for the required software, hardware, and skills maintenance needed to keep systems running.
  • Again the situation is better outside the governmental intuitions -especially with very high level capacities at ICIMOD, as well as different NGOs.

Mission Recommendations: 

Policy

  • Integrate space based and geospatial information while the following policy documents are revised: DM Act, National Strategy for Disaster Risk Management (NSDRM), 2009 and National Disaster Response Framework (NDRF), 2013
  • Create a national data policy that includes data standards (including geospatial data), which points to a clear need for National Spatial Data Infrastructure (NSDI);
  • Develop guidelines for a disaster inventory database and clearly spell out, who will provide services, who will use them, and for what purpose.
  • To ensure the efficient use of resources in support of DRR, there should be a department or entity that is entirely dedicated to coordination. ;
  • In the meantime, there can still be coordination between agencies producing and using data for disaster management and emergency response. MoHA can convene an information management or GIS working group. This group will coordinate data management activities, share data, develop standards, and work toward there being no duplication of efforts.
  • Army, APF, NGOs (KLL, Nepal GIS Society), Survey Department and ICIMOD are important players.

Data availability and sharing

  • “One Nation-One Map” policy to promote the preparation of base line thematic layers including hazard and risk maps at highest possible resolution and scale by respective agencies in a time bound manner.
  • Policy document and related actions to convince key ministries to invest in earth observation and geospatial information, which leads to faster economic growth.
  • Data access should be explicitly addressed in high level policy or strategy. Then technology can easily be put in place to facilitate data access.
  • Organisations like DWIDM, DHM, DMG needs clear mandate and strategic guidance from MoHA to undertake hazard/risk mapping.
  • A portal for discovering national data assets is needed, regardless of whether or not data may be shared freely, for cost, or not at all. This will reduce duplication of effort.
  • Overarching plan to generate spatial data is needed (land use, soil, hydro-geomorphology, water resources, socio-economic etc.)

Capacity Building and Institutional Strengthening

  • Capacity building should be guided by a strategy that addresses long-term capacity building needs;
  • Use of in-house institutions to offer regular capacity building programmes focused on space technology applications in specific themes and upcoming innovations;
  • Develop technological capacity or set up a dedicated centre that would provide technical support to NEOC; and
  • Ensure trained staffs remain in their positions within the government department allowing them to focus on specific technical skills to leverage remote sensing and GIS in support of DRR and DM.
  • Capacity existing in other institutions such as ICIMOD can be used as a valuable resource to maintain capacity within the government.
  • Explore opportunities for Public-Private Partnership

Strengthening Disaster Risk Reduction

  • Critical role by NEOC in facilitating hazard, and risk maps using Earth observation;
  • National mission guiding the use of geospatial technology in disaster management include inventory, monitoring, spatial analysis and modeling and developing GIS-based tools for hazard, vulnerability and risk analysis.
  • Establishment of a technical centre within NEOC which can be partly manned by staff from stakeholder ministries. This centre should be able to coordinate and use information generated by all stakeholder agencies during all stages of disaster management; and
  • For disaster risk reduction, preparation of hazard zonation maps, early warning and mainstreaming guide lines are considered as key areas to focus.
  • DRR should be a key component of sustainable development (SDG) and integrate climate change adaptation.

Strengthening early warning and preparedness

  • The existing early warning system (EWS) should be strengthened by building expertise on advanced applications of Earth observation (reference ICIMOD efforts);
  • There is an urgent need to build capacities for multi-hazard use of EWS, where information (thematic maps, risk maps etc.) generated from satellite images can be integrated with early warning information; and
  • Strengthen capacities in providing more accurate and localized early warning information that can be used for local disaster preparedness and response at the community level.

Strengthening emergency response

  • Develop routine mechanism to use Earth observation to provide situational awareness to support NEOC and ensure coordinated and effective response during emergencies;
  • NEOC should become an Authorised User of the International Charter for Space and utilized Sentinel Asia facility at ICIMOD;
  • Prepare SOPs for acquisition and utilisation of space based information during emergency response (Reference: WG in UN-SPIDER Conference 2015)
  • The training and mock drills on routine basis to enable stakeholders to make good use of international support
  • Information sharing channels during emergencies should be clarified in the legal and strategic documents developed by MoHA
  • Cross train geospatial professionals with DM –the two are largely treated as independent functions.
  • Basic map reading and land navigation skills must be taught across all entities involved with DM, particular within the response community
  • Prepare and implement a geospatial strategy and NSDI under leadership of MoHA, in close collaboration with main players;
  • Develop an institutional capacity development strategy;
  • Prepare and implement a plan to address Priority 1 of Sendai framework by developing methods identify risks, hazards and vulnerabilities using geoinformation; and
  • Prepare and implement a plan to address Priority 4 of Sendai framework for Disaster Reduction: 2015-2030 by developing SOP to use earth observation for enhancing disaster preparedness for effective response.

Actions identified during debriefing at Ministry of Home Affairs on the 5th day of the TAM

  1. Re-start planning to develop an NSDI. Under the leadership of the Survey Dept, but with the active participation of all concerned agencies and partners. (governmental and Non-governmental agencies)
    1. Strengthen DRR portal to host relevant data related to DRR
  2. TAM to suggest innovative approaches in capacity building for mainstreaming Space tech in DRR and DR
  3. Enhance existing partnerships to maximize the use of space tech at EOC.
  4. Suggest mechanisms for using space technology to identify and address vulnerability. (focus on more accessible technology –not high-tech)
  5. TAM to recommend ways to strengthen DRR, perhaps through strengthened partnership with academic partnerships.
  6. TAM to share our observations on capacity of the different agencies of the GoN.
  7. UN to explore ways to support the GoNin efforts to improve the use of space technology for DRR.
  8. Support awareness raising activities at the very senior government level on the benefits of GIS and remote sensing in DRR (and beyond). TAM can share lessons learned
  9. TAM to suggest ways to better manage and use information in support of emergency response operations. (i.e review DRR Portal)
  10. Establish an executive and technical committee under the leadership of NEOC. (or the to-be-established NDMC)
    1. Executive committee to look at policy and mandate issues
    2. Technical committee to coordinate data collection activities, identify data sources, and establish data standards and guidance.

Recommended Practice: Exposure Mapping

English

Teaser Recommended Practice: 

Mapping the extent of a natural hazard (e.g., assessing areas with a high risk) or disaster is a first step in disaster risk management and emergency response. Subsequently, exposure mapping enables the estimation of the impact of hazards or disasters, for example, regarding the number of affected inhabitants or infrastructure. The following practice shows the use of Quantum GIS to analyze a disaster extent map in combination with auxiliary data such as population or land cover data.

Flowchart Recommended Practices: 

Related Software: 

Objective: 

The objective of this practice is to estimate the exposure of a natural hazard or disaster. As an example, the number of inhabitants affected by a flood event is estimated. The joint use of the flood mask, created by the Recommended Practice: Flood Mapping, and the WorldPop data set constitutes a viable solution to quickly estimate the impact of the flood regarding the population. The proposed methodology is a universal practice which combines a simple approach based on open-source software and free of charge data together with a beforehand created map covering the extend of a natural hazard or disaster.

Disaster Cycle Phase: 

  • Mitigation
  • Preparedness
  • Recovery & Reconstruction
  • Relief & Response

Main Hazards: 

  • Drought
  • Earthquake
  • Extreme Temperature
  • Forest Fire
  • Flood
  • Insect Infestation
  • Mass Movement
  • Pollution
  • Severe Storm
  • Tsunami
  • Volcanic Eruption

Test Site: 

Malawi

Context: 

The practice was applied in the context of the flood event in Malawi in January 2015. Since December 2014, heavy rains affected Malawi causing rivers to overflow. The flooded area in this analysis covered a part of the Nsanje district around Chiromo.

Applicability: 

This practice can be applied globally. Besides of the beforehand created hazard or disaster extent map, the practice does not need specific near real-time data as it is based on population, land cover, or other auxiliary geodata archives. The WorldPop data set provides population data for Africa, Asia as well as Central and South America with a spatial resolution of 100 meters. The Landcover30 data base provides global landcover data with a spatial resolution of about 30 meters.

Mongolia - Technical Advisory Mission

At the request of the National Emergency Management Agency (NEMA), Government of Mongolia, UN-SPIDER supported NEMA and stakeholders organisations in strengthening disaster risk management and emergency response by effective use of space based information including data sharing, National Spatial Data Infrastructure, policy level interventions and capacity.

Dates: 

Mon, 11/08/2014 to Fri, 15/08/2014

Host Institution: 

National Emergency Management Agency (NEMA)

Country/Region: 

Main Hazards: 

Mission Team: 

The team of seven experts, under leadership of the UN-SPIDER, visited Mongolia from 11-15 August 2014. The mission team represented following organisations: UN-SPIDER/UNOOSA, National Disaster Reduction Center of China (NDRCC), University of Georgia, Airbus Defence and Space, Asia Disaster Preparedness Center (ADPC), United Nations Office for the Coordination of Humanitarian Affairs (UNOCHA) and Asia-Pacific Space Cooperation Organization (APSCO). Some of these organisations are already engaged with organisations in Mongolia in the area of disaster management and space technology.

Mission Profile: 

During this five-day mission, the mission team visited seven Ministries and Government agencies and three United Nations offices to carry out in-depth discussions. On 15 August, the Workshop “Use of Space Technology in Disaster Risk Management” was organized. About 40 officials representing various ministries/departments, institutions, and academia attended the workshop. The workshop generated awareness among a larger group of stakeholders in Mongolia, and sought their inputs on current challenges in using space-based information in disaster management.

Mission Findings: 

  • Mongolia has invested heavily in Earthquake Early Warning Systems and needs to strengthen its’ efforts towards disaster risk reduction as well as to be equipped with adequate capacity, skills and infrastructures;
  • Local government agencies are heavily involved in emergency response activities;
  • The laws, policies and plans related to disaster management are well thought out and entrusts the apex agency for emergency response and disaster risk reduction;
  • Government is focusing on disaster risk reduction to reduce losses due to disasters;
  • Many organizations are implementing several projects with national and international partners using Remote Sensing (RS) and Geographic Information System (GIS) technologies;
  • There are a few good examples of agencies using RS/GIS but they are based mainly on coarse resolution satellite images.

Mission Recommendations: 

Policy and Coordination

  • Geo-spatial data policy should be formulation and implementation, as well as the NSDI initiative at the provisions in existing law and policy;
  • Space-technology usage for disaster protection activities should be considered in the State Policy on Disaster Protection;
  • Geospatial agencies should focus on using spatial data and remote sensing for disaster risk reduction and response;
  • An effective data sharing policy should be formulized before the satellite launched

Data access, availability and sharing

  • Data requirements and coordination should be clearly addressed in the procedure of emergency response;
  • Promote the data sharing platform and mechanism at national level and local level;
  • Take advantage of International/regional mechanism for data access among key agencies in Mongolia

Capacity Building and Institutional Strengthening

  • Building capacity to use remote sensing data and data products among stakeholder organizations in Mongolia;
  • Data providing agencies may require an upgrading of their skills and staff needs additional training on server based technologies;
  • Sentinel Asia facilities needs a team of remote sensing/GIS Experts;
  • Assessing the availability and accessibility of international space-based information is recommended.

Strengthening DRR Decision making

  • DRR decision making calls for balanced effort to address issues with respect to stages of disaster management and related activities should be further linked to climate change issues involving space based information ;
  • Long term analysis should be conducted on a regular basis;
  • More detailed hazard assessments maps are needed for operational purposes;
  • Mechanisms should be established for allowing for rapid data sharing with minimal administrative action;

Strengthening early warning and preparedness

  • Risk prone areas should be identified for better preparedness and remote sensing should be incorporated into early warning and preparedness activities;
  • Existing ground based infrastructure for early warning should be complemented with extended remote sensing programmes;
  • GIS based information systems need to link to remote sensing data portals at provincial offices;
  • Satellite based drought early warning information should be seen as a priority.

Strengthening emergency response

  • Increased capacity is needed for managing other international mechanisms;
  • Key stakeholder agencies should discuss ways to get the right information products suitable for large scale disaster response;
  • Spatial information products should be accurately expressed that expected to receive from other institutions and enhance GIS facilities with high resolution images and large scale;
  • Technical agencies should consider seconding their staff to coordination organization during an emergency.

Communication architecture of an early warning system

 

External Contact Person: 

M. Angermann

Email: 

michael.angermann [at] dlr.de
English

Bibliographic reference: 

M. Angermann et al. (2010). Communication architecture of an early warning system. Nat. Hazards Earth Syst. Sci., 10, 2215–2228, 2010

Pages

Zircon - This is a contributing Drupal Theme
Design by WeebPal.