Landslide

In the early hours of August 2, 2014, nearly 2 kilometers of hillside collapsed in rugged northern Nepal. Image: NASA.

Definition

The term “landslide” refers to a variety of processes that result in the downward and outward movement of slope-forming materials, including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing (UNDRR).

A landslide is a downslope movement of rock or soil, or both, occurring on the surface of rupture, either curved (rotational slide) or planar (translational slide) rupture, in which much of the material often moves as a coherent or semi coherent mass with little internal deformation (USGS).

Facts and figures

According to the International Disaster Database of the Centre for Research on the Epidemiology of Disasters, in the period from 2000 to 2014, 26,000 persons have lost their lives because of landslides and flash floods while the economic losses amounted to over US$ 40 billion (OFDA/CRED).

Landslides can be classified into different types on the basis of the type of movement and the type of material involved. In brief, material in a landslide mass is either rock or soil (or both); the latter is described as earth if mainly composed of sand-sized or finer particles and debris if composed of coarse fragments. The type of movement describes the actual internal mechanics of how the landslide mass is displaced: fall, topple, slide, spread, or flow. Thus, landslides are described using two terms that refer respectively to material and movement, that is rockfall, debris flow, and so forth. Landslides may also form a complex failure encompassing more than one type of movement that is, rock slide and debris flow (USGS).

The primary driving factor of landslides is gravity acting on a portion of a slope that is out of equilibrium. The following are some of the major landslide triggering mechanisms:

  • River erosions, glaciers, or ocean waves
  • Weakening of rock and soil slope properties through water saturation by snowmelt or heavy rains
  • Stresses, strains and excess of pore pressures induced by the inertial forces during an earthquake (earthquakes of magnitude greater than or equal to 4.0 can trigger landslides)
  • Volcanic eruptions with the production of loose ash deposits that may become debris flows (known as lahars) during heavy rains
  • Stockpiling of rock or ore, from waste piles, or from man-made structures
  • Changes of the natural topography caused by human activity (UNDRR).

Related content

SAM Satellite

The satellites SPOT 5 (Satellite Probatoire de l'Observation de la Terre) was a third generation of SPOT earth observation satellite operated by Spot Image.

SPOT 5 used the improved SPOT Mk.3 bus design.

The prime imaging instrument was HRG (High Resolution Geometric), which was built by Astrium SAS of Vélizy, France to continue to improve the HRVIR service of SPOT-4. Two HRG instruments are provided in the conventional SPOT-series double-observation configuration, each with a FOV of 4.13º and the same... read more

Launch date:
04/05/2002

The government-owned Landsat 7 was successfully launched on April 15, 1999, from the Western Test Range of Vandenberg Air Force Base, California, on a Delta-II expendable launch vehicle. The Earth observing instrument on Landsat 7, the Enhanced Thematic Mapper Plus (ETM+), replicates the capabilities of the highly successful Thematic Mapper instruments on Landsats 4 and 5.
Landsat 7 is the most accurately calibrated Earth-observing satellitei.e., its measurements are extremely accurate when compared to the same measurements made on the ground.  Landsat 7’s sensor has been called “the most stable, best characterized... read more

Launch date:
15/04/1999

The satellites SPOT 4 (Satellite Probatoire de l'Observation de la Terre) was a second generation of SPOT earth observation satellite operated by Spot Image.

SPOT 4 used the improved bus design, which differed from the earlier SPOT series by having an increased lifetime of five years instead of three, a new extended platform design and service module, which can accommodate twice the payload. The propulsion module consists of a frame made of aluminum bars and two capillary tanks holding 158 kg of hydrazine.

... read more

Launch date:
24/03/1998

The satellites SPOT 1, 2 and 3 (Satellite Probatoire de l'Observation de la Terre) were the first generation of SPOT earth observation satellites operated by Spot Image.

The first generation SPOT satellites were built on the SPOT Mk.1 bus with a lifetime of three years.

The SPOT satellites were identical, with each carrying two identical HRV (High Resolution Visible) imaging instruments that were able to operate... read more

Launch date:
26/09/1993

The satellites SPOT 1, 2 and 3 (Satellite Probatoire de l'Observation de la Terre) were the first generation of SPOT earth observation satellites operated by Spot Image.

The first generation SPOT satellites were built on the SPOT Mk.1 bus with a lifetime of three years.

The SPOT satellites were identical, with each carrying two identical HRV (High Resolution Visible) imaging instruments that were able to operate... read more

Launch date:
22/01/1990

The satellites SPOT 1, 2 and 3 (Satellite Probatoire de l'Observation de la Terre) were the first generation of SPOT earth observation satellites operated by Spot Image.

The first generation SPOT satellites were built on the SPOT Mk.1 bus with a lifetime of three years.

The SPOT satellites were identical, with each carrying two identical HRV (High Resolution Visible) imaging instruments that were able to operate... read more

Launch date:
22/02/1986

Landsat 5 was launched from Vandenberg Air Force Base in California on March 1, 1984, and like Landsat 4, carried the Multispectral Scanner (MSS) and the Thematic Mapper (TM) instruments. Landsat 5 delivered Earth imaging data nearly 29 years - and set a Guinness World Record For 'Longest Operating Earth Observation Satellite', before being decommissioned on June 5, 2013.
The Landsat 5 satellite orbited the the Earth in a sun-synchronous, near-... read more

Launch date:
01/03/1984

Event

Image: NASA.

Learning Objectives: 


By the end of this training, attendees will be able to:

  • Create a flood map using Google Earth Engine
  • Generate a map characterizing areas where landslides have occurred
  • Generate a digital... read more

The Asia-Pacific region faces major disaster risks in the form of earthquakes and tsunamis, tropical cyclones and typhoons, landslides, flash floods, avalanches and glacial lake outburst floods (GLOFs). Due to the large ... read more

Recommended Practices

Floods and landslides are the first and fourth most frequent disasters around the world (Petley, 2012). There are several examples of downstream flooding caused by massive mudslides where rapid mapping is an indispensable tool for supporting disaster management activities by civil protection authorities. Since July 2014, the Copernicus programme of the European Union has been providing free-of-charge access to Sentinel-1 radar data coveirng the entire world. This allows for the exploration of new applications to strengthen hazard monitoring and disaster mitigation activities. This UN-SPIDER...

Pages

Hazard group

Terms in the same hazard group

Zircon - This is a contributing Drupal Theme
Design by WeebPal.