Low-Cost Deformation Measurement System for Volcano Monitoring

Product/Application: 

Disaster Cycle Phase: 

Hazard Type: 

Continent/Country: 

Global

Ground deformation due to volcanic magma intrusion is recognised as an important precursor of eruptive activity at a volcano. The Global Positioning System (GPS) is ideally suited for this application. With the advent of inexpensive GPS receiver boards, the development of a low-cost GPS-based volcano monitoring system is now possible. It provides an expendable way of measuring volcanic activity. This paper presents a novel, autonomous, deformation monitoring system based on the use of the low-cost Novatel Superstar II receiver. The system uses several of those GPS units, one of which being at a known reference location and the others being scattered around the area of interest. The GPS Superstar II receivers provide measurements of the L1 carrier phase and of the GPS ephemeris. Those measurements are logged at a user-defined sampling rate, and transmitted via a radio link to a central processing station. The post-processing engine uses those data in ambiguity resolution and baseline computation algorithms. The measurement of changes in GPS baseline easting, northing and height components over time forms the basis for measuring the volcano's expansion prior to eruption.
The paper reviews the major practical design considerations for GPS-based volcano monitoring systems, together with the dominant error sources. The data processing steps necessary to obtain the baseline between the reference receiver and each slave unit is also detailed. The system validation is presented, showing the performance results obtained for several baseline lengths, data sampling rates and observation session lengths. Each hardware and software component is described, as well as the system architecture and the special challenges in deploying and operating such a system in an inhospitable environment.
 

English

Bibliographic reference: 

Craig Roberts, Cedric Seynat, Chris Rizos and Graeme Hooper. 3rd FIG Regional Conference Jakarta, Indonesia, October 3-7, 2004. Low-Cost Deformation Measurement System for Volcano Monitoring.

External Contact Person: 

Craig Roberts

Add new comment

Filtered HTML

  • Web page addresses and e-mail addresses turn into links automatically.
  • You may use [block:module=delta] tags to display the contents of block delta for module module.
  • Each email address will be obfuscated in a human readable fashion or, if JavaScript is enabled, replaced with a spam resistent clickable link. Email addresses will get the default web form unless specified. If replacement text (a persons name) is required a webform is also required. Separate each part with the "|" pipe symbol. Replace spaces in names with "_".
  • Lines and paragraphs break automatically.
  • Allowed HTML tags: <b> <i> <hr> <strike> <sub> <sup> <table> <tr> <td> <tbody> <thead> <h1> <h2> <h3> <h4> <h5> <p> <a> <br> <em> <strong> <cite> <code> <ul> <ol> <li> <dl> <dt> <dd> <img>

Messaging plain text

Plain text

  • No HTML tags allowed.
  • You may use [block:module=delta] tags to display the contents of block delta for module module.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
By submitting this form, you accept the Mollom privacy policy.
Zircon - This is a contributing Drupal Theme
Design by WeebPal.