Towards an Interactive Educational Environment for Disaster Management Support

(IEEDM Project)

Dr. Algis Kucinskas, ENSAPLV, Paris, France
Dr. Brian Tomaszewski, CMS/RIT, Rochester, NY USA
Outline

1. Educational geoportal (IEEDM) project team
2. Moving towards an IEEDM
 • An educational programme
 • DM user community needs analysis/assessment
 • IEEDM project objectives & approach/timeline
3. Step 1: General concepts, core components, planned applications / target end-users
4. Step 2: IEEDM structure & features in practice
5. Step 3: The way forward
Towards an Interactive Educational Environment for Disaster Management Support (IEEDM Project)

IEEDM Project Team

- **Algis Kucinskas**, Ph.D., ENSAPLV, Paris, France
 Member UN-SPIDER KP Core Group & Expert Group on CB
 Former Staff Scientist, JPL/NASA, Pasadena, CA USA
 (Geosciences, Space & Geo-information Science & Technology and Applications, Education & Training, Capacity Building)

- **Brian Tomaszewski**, Ph.D., CMS/RIT, Rochester, NY USA
 UN/OCHA Consultant/Researcher, UN-SPIDER KP Contributor
 (Geographic Information Science & Technology (GIS & T), Geovisual Analytics, Disaster Management, Geospatial Technology Education)

Advisors

- **Bikash Chaudhuri**, Architecte DPLG, ENSAPLV, Paris, France
 (Architecture, Urban Planning, Environmental Issues, Education)

- **Dogan Seber**, Ph.D., NRC, Rockville, Maryland, USA
 Former Director, Geoinformatics Lab, SDSC, San Diego, CA USA
 (Geophysics, Information Science & Technology, Education)
An Educational Programme

• In response to identified user communities needs & to address recommendations of UNISPACE III & the MDGs, we initiated an educational programme within the Geoinformatics Lab, SDSC (2006).

PROGRAMME GOALS:

• Design, develop, implement & evaluate distributed GIS solutions (digital learning resources & learning environments) for awareness raising, transfer of knowledge, & capacity building specific to the use of space, geo-information & other relevant technologies applications & concepts for addressing social, economic, and environmental impact issues.
Moving Towards an IEEDM: DM User Community Needs Assessment /Analysis

• In the period 2007-2008 A. Kucinskas participated in several UN-SPIDER-relevant Workshops and meetings (ongoing process).

• One important fact which emerged:

there is a gap between the required basic knowledge/understanding to efficiently use geographic information & the relevant formal training/capacities for some of the planners, managers, and decision-makers involved in DM/ER activities.

To contribute to reducing this gap & address DM user community needs we adapted our educational programme to support specific activities of UN-SPIDER: (1) systematic compilation of relevant information; (2) define & implement a KP; (3) awareness raising; (7) management & transfer of knowledge; (11) support to capacity building (Ref – UN document A/AC, 105/894).
IEEDM Project: Objectives

• Within our educational programme, the primary aim of this effort is to develop an interactive, web-enabled educational geoportal designed to support full natural disaster management cycle planning & decision making activities.

• The planned inquiry & case study-based, hands-on e-learning/training environment seeks to help end-users at all levels & from a wide variety of backgrounds:
 • acquire an understanding of hazard/disaster risk and impact on society & the environment (awareness raising).
 • Learn of the benefits of space, geo-information & other relevant technologies-based geospatial information/knowledge for DM/ER (awareness raising).
 • Learn how to efficiently use/apply such information & knowledge for improved planning & decision-making (capacity building).
IEEDM Project: Approach / Timeline

Towards our objectives, a stepwise approach:

• **Step 2 (2009-):** Partnership with Dr. B. Tomaszewski (CMS/RIT): concept expansion, IEEDM proof-of-concept prototype (Ref – Tomaszewski RIT SIG Grant).

• **Step 3 (2010 ?):** Develop full scale IEEDM, user evaluation.
Step 1 - General Concepts / Educational Foundations

- IEEDM builds on & extends earlier work on a dynamic, web-enabled, interactive & user friendly Educational Information System called « Discover Our Earth (DOE) », built at Cornell & SDSC for geosciences education purposes.

- IEEDM draws upon proven pedagogical concepts developed from DOE, such as: an effective inquiry/discovery-based, hands-on approach to learning & the use of real world geospatial data.

- One key advantage: users feel empowered playing an active part while learning to make & interpret value-added hazards risk information & knowledge map products (Source: DOE student surveys).

DOE was funded in full by the National Science Foundation (NSF)
Step 1 - IEEDM Core Components

- **Geo-databases** for selected disaster-prone areas, including multihazard-relevant geospatial data from various sources.
- **GIS-based software components**, including an interactive mapping/analysis tool.
- **Online interactive study guides** on the topics addressed by the data sets.
- **Interactive applications** for effective inquiry-based, hands-on learning in the form of:
 - Study guides-relevant « virtual exercises » and discovery-based mapping activities
 - Personalized regional training case study sessions: study region selection & documentation; making a hazard info product; make inferences in terms of DM-related risk assessment & reduction, planning & decision-making for the at risk study region.
Step 1 – Planned Applications / Target End-Users

The IEEDM seeks to complement traditional class-based awareness raising & capacity building initiatives by targeting a wide audience with varying technical skill levels & diverse educational, cultural, and institutional backgrounds.

NOTEWORTHY PLANNED APPLICATIONS:

- **Quickly educating/guiding** those involved in DM/ER but with little or no formal training in geosciences, space science & technology & applications, as well as the handling & interpretation of geospatial data & derived geospatial information and knowledge.

- **Empower novice users** with the required skills/vocabulary to facilitate communication between & help create bridges to connect the various communities involved in DM/ER.

- **Empower local populations** for an increased participation in their own DM efforts, leading to improved 2-way communication, sharing of information & feedback between professionals with technical skills & the vulnerable population in the field.
Towards an Interactive Educational Environment for Disaster Management Support (IEEDM Project)

Step 2 - IEEDM System Architecture

Based on a classic 3-tier approach:
- Library
- Middleware of GIS-based software.
- User Interface (simple to use, interactive).

Uses advanced technology:
- Cloud computing
- Knowledge communities
Step 2: IEEDM Features in Practice
Step 2: IEEDM Features in Practice
Towards an Interactive Educational Environment for Disaster Management Support (IEEDM Project)

Step 2: IEEDM Features in Practice

- Thematic image-map
- IEEDM prototype
- Annual Precepitation draped over eastern Sudan
- Rivers and populations centers
- Custom, value-added hazard risk information and knowledge product IEEDM users can create
- Personalized regional training case study session
- Interactive resources (map wizard)
- Produce, analyse and interpret knowledge products for disaster management-related planning and decision making
Idea - Concept Map — Geographic Map Integration

Concept Maps
Concept Map of Disasters
develops
Hurricane, Earthquake, Avian Flu, ...
depicts
provides location, distance, extent, etc.
provides attributes & procedures

Geographic Maps
Geo-map of Disasters
depicts
Hurricane, Earthquake, Avian Flu, ...
include
complement

Towards an Interactive Educational Environment for Disaster Management Support (IEEDM Project)

Idea - Learning Communities

Knowledge + Community
Multiple Web Platforms.

Function:
- Social Networking
 - Facebook
- Mapping
 - Google Maps
- Publishing
 - Blogger

Open Education?
Collaborative Learning?

Towards an Interactive Educational Environment for Disaster Management Support (IEEDM Project)

Idea - Learning Communities

- Real time/asynchronous collaboration to support education
- Non-core IEEDM content – user driven/created (web 2.0), open content

Examples to demonstrate the idea
Step3 - The Way Forward

• Potential inclusion of the prototype educational environment within UN-SPIDER’s KP.
• Usability evaluation of the prototype
• Development & evaluation of full scale IEEDM
• At term, consider uploading user’s data for training exercises.
• Ultimately, consider possibility integrating real or near real-time regional data, for interactive blended EIS/DSS functions.
Thank you for your attention

Algis Kucinskas
algis.kucinskas@noos.fr

Brian Tomaszewski
bmtski@rit.edu

The research presented here was supported in part by funding from the Geoinformatics Lab, San Diego Supercomputer Center (SDSC), University of San Diego, San Diego, CA USA & in part by a Scholarship Incentive Grant (SIG) from the College of Applied Science and Technology (CAST) at the Rochester Institute of Technology (RIT), Rochester, NY USA

Towards an Interactive Educational Environment for Disaster Management Support (IEEDM Project)