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a b s t r a c t

Landslides are a major type of geohazards claiming thousands of casualties and billions of dollars in prop-
erty damages every year. Catastrophic landslide activities are often triggered by some extreme events
such as earthquakes, excessive precipitations, or volcanic eruptions. Quickly identifying the spatial dis-
tribution of landslides induced by these extreme events is crucial for coordinating rescue efforts and
planning in situ investigations. In this study, we propose an automated method for detecting the spatial
distribution of earthquake-triggered landslides by examining after-event vegetation changes. Central to
this method is the use of pre- and post-event remote sensor images covering the same area. Geometric
correction and radiometric normalization are performed before deriving a vegetation index from each
image. Then, an image differencing procedure is applied to the two derived indices. With the resultant
difference image, an initial landslide distribution map is generated by highlighting the pixels with a
threshold percentage decrease in the brightness values as a direct result of the image subtraction. The
threshold percentage value is interactively determined by using a visual interpretation method. The final

landslide distribution map is produced after using a modal filter to suppress boundary errors in the initial
map. This method has been implemented in a test site, approximately 30 km from the epicenter of the
Sichuan earthquake (7.9 Ms) that struck on 12 May 2008. A pre-event Thematic Mapper image and a
post-event Advanced Spaceborne Thermal Emission and Reflection Radiometer scene are used. The the-
matic accuracy assessment indicates that 90% of the landslides have correctly been mapped. Given the
relatively simple procedures and the good mapping accuracy, the image processing and change detection

study
method identified in this

. Introduction

Landslides are rock, earth or debris flows on hillslopes due to
ravity. They are a major type of geohazards claiming thousands
f casualties and billions of dollars in infrastructure and prop-
rty damages in the world each year. Expansion of urban and
ecreational development into hillslope areas leads to more peo-
le that are threatened by landslide hazards. Catastrophic landslide
ctivities are often triggered by other extreme events, such as earth-
uakes (Harp and Jibson, 1996; Kieffer et al., 2006; Lin, 2008),
xcessive precipitation (Alcantara-Ayala et al., 2006), or volcanic
ruptions (Kerle et al., 2003). Quickly identifying the spatial distri-

ution of landslides induced by these extreme events can be useful
hen coordinating rescue efforts and planning in situ investigations

Keefer, 2002; Borghuis et al., 2007; Sato and Harp, 2009).

∗ Corresponding author. Tel.: +1 850 644 8379; fax: +1 850 644 5913.
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seems to be promising from an operational perspective.
© 2010 Elsevier B.V. All rights reserved.

Both field surveys and remote sensing can be used to map the
spatial distribution of landslides. While field surveys can obtain
detailed, accurate information on landslide distribution and clas-
sification, they are limited in terms of cost-effectiveness and
logistical constraints, particularly over a large area or an area with
a restricted access. Remote sensing, through the use of cameras
and sensors mounted on aerospace-borne platforms, can help over-
come these limitations (Kieffer et al., 2006; Mantovani et al., 1996;
van Westen et al., 2008). Because of the excellent spatial resolution
and the stereoscopic viewing capability, aerial photographs have
been used extensively in landslide mapping and zonation (Harp
and Jibson, 1996; Fookes et al., 1991; Hearn, 1995; Brardinoni et al.,
2003; Whitworth et al., 2005; Chen et al., 2006). Satellite imagery
has been used for landslide mapping since late 1970s when the
data from the first Landsat generation became available (Sauchyn

and Trench, 1978; Cochrane and Browne, 1981). Archival satellite
imagery series are particularly useful for a retrospective analysis
of landslide activities (Roessner et al., 2005); their synoptic cover-
age allows a regional assessment of landslide distribution (Weirich
and Blesius, 2007). Recent innovations in remote sensing have led

dx.doi.org/10.1016/j.jag.2010.05.006
http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
mailto:xyang@fsu.edu
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o the deployment of a new generation of aerospace sensors with
igh-spatial-resolution and agile imaging capabilities. Data from
hese recently available sensors, such as high-resolution satellite
magery (Nichol et al., 2006; Tsutsui et al., 2007), radar imagery
Colesanti and Wasowski, 2006), or lidar point clouds (Van Den
eckhaut et al., 2007), are quite suitable for landslide identification
nd classification.

With remote sensor data, landslides can be detected and
apped through either a post- or pre-classification approach. The

ormer has been quite popular, which involves a procedure of
anual interpretation or automated classification of single- or
ulti-date images. Automated classification is preferred over man-

al interpretation, particularly when working with digital data or
ver a relatively large area. Different image processing and pattern
ecognition strategies have been developed to detect and classify
andslides by using either a supervised, unsupervised, or hybrid
lassifier. These automated classifiers have demonstrated different
evels of success for landslide detection and classification (Nichol
nd Wong, 2005; Borghuis et al., 2007; Fourniadis et al., 2007). The
ajor limitation of the post-classification approach is with the diffi-

ulty in excluding other types of spectrally similar land cover, such
s human settlements, roads, riverbeds, or fallow lands. In addi-
ion, the post-classification approach requires the use of substantial
round truth data and other data, such as digital elevation model
nd stream networks, in order to achieve a satisfactory outcome
Barlow et al., 2006; Chang et al., 2007; Tarantino et al., 2007).

The pre-classification approach for landslide detection and map-
ing does not require single- or multi-date images to be classified
ith a pattern recognition procedure. For single-date images, the
re-classification approach relies upon the use of density slic-

ng or spectral enhancement techniques for landslide detection
Domakinis et al., 2008; Marcelino et al., 2009; Parker, 2009). When

ulti-date images are available, image differencing can be used
o detect landslide activities. For example, Hervas et al. (2003)
sed geometrically and radiometrically corrected time-sequential

mages to examine landslides activities through image differenc-
ng. Image bands were used to produce a series of difference images
nd landslide distribution was determined by using a thresholding
ethod. Cheng et al. (2004) also used image differencing to detect

andslide activities, but with pre- and post-event band ratio images
ather than original image bands as the input. While the poten-
ial of the pre-classification approach has been recognized by these
revious studies, further research will certainly be maintained in
rder to adopt this approach for landslide mapping in a produc-
ive mode, thus reinforcing the absolute and comparative utility of

odern remote sensing technology.
The objective of this study is to identify an automated method

or detecting and mapping earthquake-triggered landslides. We
evelop this method based on the assumption that extensive slope
ailures due to strong earthquake activities would remove mas-
ive rocks, regolith, and soil, along with vegetation, from hillslopes.
he spatial distribution of landslides can therefore be detected by
omparing the landscape characteristics, particularly vegetation
over, prior and after an earthquake event. Because the enormous
aterial and vegetation removal would alter spectral signatures

ver the affected hillslopes and surrounding areas, pre- and after-
vent remote sensor images should be appropriate for use to
uantify landscape changes and hence detect landslide activities.
echnically, our method is built upon the comparison of pre- and
ost-event images through a pre-classification approach. We com-
are and evaluate the performance of image differencing with

everal data sets derived from the pre- and post-event images in
erms of the capability to detect and map landslides. Specifically,
ur method comprises several major components: data acquisition
nd collection, image preprocessing, image transformation, change
etection, thematic accuracy assessment, and the production of
Fig. 1. Flowchart of the research methodology.

final landslide distribution map (Fig. 1). We apply this method to
a test area that was recently stricken by a strong earthquake. The
following sections will provide an overview on the test site, detail
each research component, evaluate the performance, and discuss
some possible pitfalls when using this method.

2. Test site

The test site covers part of the Wenchuan County, Sichuan
Province, China, approximately 30 km from the epicenter of
the Sichuan earthquake that struck at 14:28:01.42 local time
(06:28:01.42 Coordinated Universal Time-UTC) on 12 May 2008.
Estimated at the magnitude of 7.9 according to USGS (2008), the
Sichuan earthquake is cited as China’s most devastating earthquake
in more than three decades and the 19th deadliest earthquake in
human history. It killed 69,227, injured 374,171, made at least 5
million people homeless, and caused property damages exceeding
US$20 billion. Fig. 2 illustrates the location of the test site, along
with the epicenter that was 80 km west-northwest of Chengdu, the
capital of Sichuan Province, China.

Physiographically, the test site is a mountainous area, situated
at the eastern edge of the Tibetan Plateau. Tectonically, it is located
at the Longmenshan fault zone, a northeast striking thrust struc-
ture defining the boundary between the high topography of the

Tibetan Plateau to the west and the relatively undeformed Sichuan
Basin to the east (Hubbard and Shaw, 2009). The Sichuan earth-
quake of 12 May 2008 occurred as the result of the motion of the
Longmenshan fault, predominately on its mid-fracture known as
the Yingxiu-Beichuan fracture. The displacement of this fault zone
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ig. 2. Location of the test site. The epicenter of the Sichuan earthquake (7.9 Ms)
hat struck on 12 May 2008 is shown (lower left). The test site is about 30 km from
he epicenter. The lower right is a black–white display of Band 7 of the Landsat TM
cene acquired on 18 September 2007, covering the entire test area.

as modeled at a maximum of 9 m, which generated deforma-
ions of the surface greater than 3 m and increased the stress at
he northeastern and southwestern ends of the fault (USGS, 2008).

With the focus of 19 km in depth, the Sichuan earthquake and
he many strong aftershocks created a rupture zone extending more
han 200 km. They have triggered more than 15,000 incidences of
ockfalls, debris flows, and other types of landslides, along with
ore than 10,000 potential rockfall sites (Yin et al., 2009). Fig. 3

llustrates several examples of landslide activities near the epicen-
er of the Sichuan earthquake. These extensive landslide activities
ave been directly responsible for more than 20,000 casualties
nd widespread property damages. Many rivers were blocked by
arge landslides, resulting in the formation of several dozens of
arge quake lakes behind the natural landslide dams. These quakes
akes were of great dangers because of resultant flooding. In addi-
ion, extensive landslide activities wiped away plants and topsoil,
epleting nutrients needed for plant regeneration and burying veg-
tation; buried vegetable matter decomposes and releases carbon
ioxide and other gases to the atmosphere, degrading the health of
cosystems (Ren et al., 2009).

. Data acquisition and collection

The method we propose relies upon the use of pre- and post-
vent remote sensor images for detecting landslide activities. To
his end, images from a single remote sensor are most desired.
ut this may not always be possible due to other environmen-
al and technical constraints. For example, it is always difficult
o obtain cloud-free satellite scenes over mountainous areas due
o high moistures, particularly after an extreme event such as an

arthquake or a severe storm. Obtaining cloud-free image pairs for
hange detection is even more difficult (Ju and Roy, 2008). After
earching the entire Landsat database archived by USGS EROS Data
enter, we were able to obtain a cloud-free Thematic Mapper (TM)
cene acquired at 3:32:14 UTC on 18 September 2007, slightly more
bservation and Geoinformation 12 (2010) 487–495 489

than 8 months before the Sichuan earthquake. We could not find
any post-event TM scenes with less than 20% clouds for the test
site. Note that images from Landsat 7 Enhanced Thematic Mapper
Plus (ETM+) were excluded because of the scan line corrector fail-
ure since 31 May 2003. Fortunately, we were able to find two good
post-event scenes acquired by Terra’s Advanced Spaceborne Ther-
mal Emission and Reflection Radiometer (ASTER). The ASTER scenes
were acquired on 23 May 2008, 11 days after the Sichuan earth-
quake. The TM and ASTER scenes were used as the primary data.
The specific dates, sensors, satellite scene ID or reference system,
resolutions, and other environmental parameters are summarized
in Table 1.

In addition to the above remote sensor images, we col-
lected diverse geospatial datasets, including the epicenter location,
administration boundaries, digital elevation model (DEM) data
derived from the Shuttle Radar Topography Mission (SRTM), geo-
logical maps, socio-economic data, and so on. These geographically
referenced data were used to facilitate remote sensing-based land-
slide mapping.

We also conducted a limited field work to collect first-hand
data concerning the earthquake impacts and landslide activities in
Wenchuan. This part of work has been quite helpful for facilitating
data processing and interpretation.

4. Data preprocessing

Georeferencing, mosaicking, subset, and radiometric correction
were carried out. Establishing a common georeferencing system
among all data layers is a prerequisite for spatially corrected land-
scape change mapping. The two dates of images were geometrically
rectified by the data providers. Specifically, the ASTER images
belong to L1B data products that have been geometrically cor-
rected at Ground Data System (GDS), Japan, using supplementary
and ancillary data; their nominal pixel geolocational knowledge
is within one pixel (less than 15 m) (Abrams et al., 2002). The TM
image has been systematically orthorectified at the USGS EROS Data
Center. In addition, these images have been partially retransformed
by the Global Land Cover Facility (http://www.landcover.org). We
visually confirmed the geometric correction quality by geographi-
cally linking of a set of cultural and natural features from the two
images. Here, each image was further georeferenced to the Uni-
versal Transverse Mercator (UTM) map projection (Zone 48N), the
World Geodetic System (WGS) 1984 horizontal datum, and the
WGS 1984 ellipsoid. Other geospatial data layers were also geo-
referenced similarly.

A mosaicking procedure was used to combine the two adjacent
ASTER scenes in order to cover the entire test area (see Fig. 1).
The actual image subset used in landslide mapping covers a rect-
angle area of 18,586 m in width and 19,187 m in height (Fig. 4).
Therefore, both the TM and mosaicked ASTER images were clipped
with the rectangle as the mask. Note the image subset operation
also included the exclusion of the thermal bands from the TM and
ASTER images for further analysis due to their coarse spatial res-
olution. For the ASTER scenes, the six SWIR bands (see Table 1)
were also excluded for further analysis because of their poor image
quality caused by the malfunctioning of the SWIR detectors since
2007.

The two images were acquired by different sensors at different
dates. To allow meaningful detection of landscape changes based
on these images, a common radiometric response between them

should be restored (Yang and Lo, 2000). For this purpose, the rela-
tive radiometric normalization (RRN) is preferred over the absolute
radiometric correction method because no in situ atmospheric data
at the time of satellite overpasses are necessary. Based on the
comparative research done by Yang and Lo (2000), the RRN proce-

http://www.landcover.org/
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Fig. 3. Landslide activities near the epicenter of the Sichuan earthquake. Upper left: numerous landslides (mainly rockfalls and debris flows) surrounding a small town that
was severely destroyed during the earthquake; upper right: debris flows with large scars; middle left: a landslide complex dominated by rockfalls around a reservoir; middle
right: debris flows (short distance); lower left: shallow debris flows (long distance); and lower right: shallow debris flows along a river.

Table 1
List of the remote sensor images used.

Data provider USGS EROS Data Center USGS and Japan ASTER Program
Satellite Landsat 5 Terra
Sensor Thematic Mapper (TM) Advanced Spaceborne Thermal Emission and Radiometer (ASTER)
Scene ID or reference system Path 130 Row 38 035700 035709
Acquisition time 18 September 2007 23 May 2008 23 May 2008

3:32:14 UTC 3:57:00 UTC 3:57:09 UTC

Bands VNIR (1–4 bands) VNIR (1–3 bands)
SWIR (Bands 5 and 7) SWIR (4–9 bands)a

TIR (Band 6) TIR (10–14 bands)

Pixel size 28.5 m (120 m for Band 6) VNIR: 15 m; SWIR: 30 m; TIR: 60 m
Radiometric resolution 8-bits VNIR and SWIR: 8-bits; TIR: 12-bits
Swath width 185 km 60 km
Solar azimuth 140.34◦ 122.27◦ 120.88◦

Solar elevation 53.84◦ 71.87◦ 72.03◦

Platform altitude 705 km above the mean sea level 705 km above the mean sea level

a The six ASTER SWIR bands were not actually used because of the sensor malfunctioning since 2007. Their information is listed here for reference only.
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ig. 4. Remote sensor images used. The left is a false color composite of the Landsat
STER scene obtained on 23 May 2008. Both were clipped to cover the same area. E

n height.

ure proposed by Hall et al. (1991) was applied to the two images
n order to suppress their radiometric differences caused by the
ariations among atmospheric conditions, sensor-target-viewing
eometry, vegetation growing seasons, and phenological charac-
eristics. The relative radiometric normalization method developed
y Hall et al. (1991) is based on the use of radiometric control sets
hat should have little or no variation through the time period.

ith the TM image dated on 18 September 2007 as the refer-
nce, the ASTER image dated on 23 May 2008 as the subject
cene was then radiometrically rectified by using the radiomet-
ic control sets. Note that these sets were extracted by using the
wo non-vegetated extremes of the Kauth-Thomas (KT) greenness-
rightness scattergram which was constructed using the first two
ands of a Tasseled Cap transformation of the raw image (Hall et
l., 1991).

. Image transformation

We adopted a pre-classification approach through image dif-
erencing to detect the spatial occurrences of earthquake-induced
andslides (see Section 1). Either image bands or derived images can
ossibly be used for this purpose (see next section). The former can
e directly extracted from original images. When derived images
re to be used, an image transformation procedure will need to be
erformed. There are some different ways to transform multispec-
ral images into a new dataset, which is usually smaller and easier to
nterpret but still represents most of the information from the orig-
nal dataset. Examples of these image transformation techniques
nclude principal component analysis (PCA), independent compo-
ent analysis (ICA), minimum noise fraction (MNF), band ratioing,
nd a large number of vegetation indices. Here, we were mainly
nterested in the vegetation mass change after the Sichuan earth-
uake, which were further used to detect landslide activities. To this
nd, we computed a popular vegetation index, namely, Normal-
zed Difference Vegetation Index (NDVI), from each of the TM and
adiometrically normalized ASTER images by using the following
ormula:

DVI = NIR − RED
NIR + RED
here RED and NIR represent the spectral reflectance measure-
ents obtained in the red and near-infrared regions, respectively.

ED and NIR correspond to Bands 3 and 4 for the TM scene and
ands 2 and 3 for the ASTER scene. Note that for the ASTER data,
e also computed a NDVI image from the original scene without
ene acquired on 18 September 2007, while the right is a false color composite of the
age is north–south oriented, with a dimension of 18,586 m in width and 19,187 m

radiometric normalization. This NDVI image will be used for the
comparative purpose to be discussed in the next section.

6. Change detection

An image differencing procedure was used to detect landscape
change by using the following formula:

�BV = BVa − BVb

where �BV is the change pixel value, BVa is the brightness value on
the after-event image, and BVb is the brightness value on the pre-
event image. Note that the nearest neighbor method of resampling
was used when producing the change analysis output from the two
images with different pixel sizes (see Table 1).

We implemented the above procedure by using four different
types of input data: (1) pre- and post-event image bands without
radiometric normalization. Since we were mainly interested in the
vegetation change and the near-infrared portion of the spectrum
is very responsive to the amount of vegetation biomass present,
only the identical near-infrared bands were considered. In other
words, Band 4 of the TM image and Band 3 of the ASTER image
were actually used here; (2) pre- and post-event image bands with
radiometric normalization. Band 4 of the TM image and Band 3 of
the radiometrically normalized ASTER image were used; (3) pre-
and post-event vegetation index images without radiometric nor-
malization. Two NDVI images derived from the TM and the original
ASTER scenes were the input; and (4) pre- and post-event veg-
etation index images with radiometric normalization. Two NDVI
images derived from the TM and the radiometrically normalized
ASTER scenes were used. The input and output for each of these
four scenarios are illustrated in Fig. 5.

As can be seen in Fig. 5(A)–(E), the brightness values of the
pixels on the original image bands were strongly affected by the
topographic slope and aspect. This sensor-sun-terrain viewing
geometry problem causes a bright foreslope and a dark backslope.
The topographically induced illumination variation has become
quite complicated when solar azimuths and elevations varied
between the TM image and the ASTER scenes (see Table 1). There-
fore, the two difference images (C and F) derived from the two sets

of image bands (A and B; D and E) with or without radiometric nor-
malization are quite difficult to interpret; it is virtually impossible
to separate the pixels with a brightness value decrease caused by
landslide activities from those because of the viewing geometry
variation between the TM and ASTER images.
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Fig. 5. Comparison of image differencing with different datasets derived from the pre- and post-event remote sensor images: (1) using image bands without radiometric
normalization: (A) TM Band 4 (near-infrared), (B) ASTER Band 3 (near-infrared), and (C) the difference image after subtracting (A) from (B). (2) Using image bands with
radiometric normalization: (D) TM Band 4, (E) normalized ASTER Band 3, and (F) the difference image after subtracting (D) from (E). (3) Using pre- and post-event vegetation
i ne, (H
( ic norm
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ndex images without radiometric normalization: (G) NDVI image from the TM sce
G) from (H). (4) Using pre- and post-event vegetation index images with radiometr
STER scene, and (L) the difference image after subtracting (J) from (K). Note that e

The topographically induced illumination variation has been
ubstantially subdued on the three NDVI images (G, H, and K), par-
icularly for the one derived from the radiometrically normalized
STER scene, making the resultant two difference images (I and L) to
e easier to interpret. This is clearly the biggest advantage of using
erived images from a well-established vegetation index transfor-
ation rather than original image bands in an image differencing

hange detection procedure. Furthermore, the difference image (L)
erived from the two NDVI images with radiometric normaliza-

ion was found to be more useful for landslide detection. Therefore,
mage L was used to create an initial landslide distribution map
y highlighting the pixels with a decrease of at least 10% in their
rightness values as a direct result of the subtraction. Note that the
etermination of a threshold for image differencing change detec-
) NDVI image from the ASTER scene, and (I) the difference image after subtracting
alization: (J) NDVI image from the TM scene, (K) NDVI image from the normalized

age is displayed with an identical stretching method.

tion is not a trivial issue, and some more analytic methods have
been discussed by Rosin and Ellis (1995). Here, we interactively
determined this threshold by using a visual image interpretation
method.

One more step of processing was carried out to suppress the
boundary errors at the landslide distribution boundaries due to the
occurrence of spectral mixing within a pixel, image noises, and geo-
metric registration errors of the two input images (Yang and Lo,
2002). These boundary errors are often small and in the form of

salt and pepper. These small areas have to be removed and replaced
with class values based on their surroundings. A modal filter can be
used to suppress this type of boundary errors (Yang and Lo, 2002).

The modal filter is also called focal majority filter. It is applied to
an n × n pixel patch, where n is an odd integer. A histogram of class
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Table 2
The thematic accuracy assessment report.

Reference Row total Producer accuracy User accuracy Kappa index

Background Landslides

Detected
93.48% 86.00% 0.74
87.04% 94.00% 0.87
Overall accuracy = 90.00%
Overall kappa index = 0.80
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Background 43 7 50
Landslides 3 47 50
Column total 46 54 100

alues in the patch is generated and the value having the highest
requency is returned as the new central value. The center pixel’s
alue thus becomes that of the most commonly occurring class
ithin the patch. In this way, the small (and erroneously classi-
ed) pixels are reclassified according to the dominant class within
he patch.

The choice of filter size and the number of neighbors were based
n the field observation that individual landslides were mostly lin-
ar and within three pixels (or 45 m for the ASTER images and
5.5 m for the TM image) in size in our study area. A 3 × 3 modal
lter was used, but with the four corner cells disabled (i.e. with zero
alue) for preserving some linear features.

. Thematic accuracy assessment

A standard procedure for thematic accuracy assessment rec-
mmended by Congalton (1991) was implemented here. A total
f 100 test points were chosen by using the stratified random
ampling scheme. Each of these points was assessed through

visual image interpretation procedure using image elements
nd the reference data from field surveys and Google Earth. The
igh-spatial-resolution satellite imagery recently available through
oogle Earth is found to be quite valuable for landslide mapping

Sato and Harp, 2009). An error matrix was constructed, and stan-
ard accuracy report metrics were generated (Table 2), including
roducer accuracy (87.04%), user accuracy (94.00%), overall accu-
acy (90.00%), overall kappa index (0.80), and conditional kappa
ndex (0.87). The accuracy assessment report indicates that most
f the landslides have successfully been detected and mapped. This
s a good indication that the image processing and change detec-
ion procedures adopted have been effective in mapping the spatial
istribution of earthquake-triggered landslides from remote sensor
ata.

. Spatial distribution of landslides

Fig. 6 illustrates the spatial distribution of landslides after the
ichuan earthquake. Quantitatively, these earthquake-triggered
andslides occupied 5903 ha or approximately 16.48% of the total
tudy area. By using the original satellite scenes, Google Earth,
nd other reference data (see Section 3), we visually examined the
andslide distribution in relation to other geographic features such
s stream networks, terrain slope, and road networks. We found
hat most of the landslides occurred along the Mingjing River and
ts major tributaries (black patches in Fig. 6). They were largely
hallow slope failures, dominated by debris flows. These shallow
andslides occurred due to two major reasons. Firstly, the seismic

aves during the Sichuan earthquake and many strong after-
hocks substantially increased pore pressure and hence reduced
he shear strength. On the other hand, the seismic waves reduced

he strength of the bonds between soil particles, thus decreasing the
verall soil cohesion. The reduction of the shear strength and the
verall soil cohesion, combined with the ground acceleration from
eismic waves, was responsible for many shallow slope failures.
uch a mechanism of earthquake-triggered landslide activities was
Fig. 6. Spatial distribution of the earthquake-induced landslides.

also described by Alkema et al. (1994). Another reason leading to
the extensive slope failures was due to the excessive rainfalls after
the Sichuan earthquake. High moisture can cause topsoil to become
saturated, resulting considerably reduction of soil shear strength
(Van Asch et al., 1999).

A considerable number of landslides also occurred around
mountain summits and ridges. These areas are not subject to slope
failures under the influences of hydrological processes, deforesta-
tion, or road construction. Only the powerful seismic shaking,
particularly the forceful vertical ground seismic wave acceleration
during the Sichuan earthquake and many strong aftershocks (Li et
al., 2008), could trigger such extensive slope failures around moun-
tain peaks or crests. A similar landslide distribution pattern was
also observed by other investigators who have done extensive field
surveys (Yin et al., 2009; Wang et al., 2009) or used remote sensing
(Sato and Harp, 2009).

9. Discussion and conclusions

Catastrophic landslide activities are often triggered by some
extreme events like earthquakes or volcanic eruptions, and quickly

identifying the spatial distribution of landslides induced by these
disastrous events is crucial for coordinating rescue efforts and
planning additional in situ investigations. In this study, we have
identified an automated method for detecting and mapping
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arthquake-triggered landslides by examining post-event vegeta-
ion changes. Central to this method has been the acquisition of
re- and post-event remote sensor images. Ideally, these images
hould be acquired by the same sensors at approximately the same
easons, but this is not always possible due to some environmental
nd logistical constraints. In particular, obtaining cloud-free image
airs for change detection has been quite challenging. Fortunately,
e were able to acquire two dates of good-quality images from

he TM and ASTER sensors. Radiometric normalization of the satel-
ite images acquired by different sensors at different dates has
een critical in the image differencing change detection proce-
ure adopted in this study. The use of derived images rather than

mage bands has improved the interpretability of detected land-
cape changes in the context of massive landslide activities due
o strong seismic shaking. The thematic accuracy assessment indi-
ates that the image processing and change detection procedures
dentified in this study have been quite effective in mapping the
patial distribution of earthquake-triggered landslides.

At the application level, this study has demonstrated a well-
ocumented case study focusing on part of the most impacted
rea by the Sichuan earthquake (7.9 Ms) that struck on 12 May
008. This area has been an ideal test site to study earthquake-

nduced landslides. We found that most of the large landslides
ccurred along the Mingjiang River and its major tributaries. Seis-
ic waves in combination with excessive rainfalls immediately

fter the earthquake were responsible for many shallow slope
ailures. Additionally, there have been a considerable number of
andslides occurred around mountain summits and ridges, sug-
esting the strong impacts of the vertical ground seismic wave
cceleration during the Sichuan earthquake and many strong after-
hocks. The methodology developed in this study can be readily
pplied to detect landslide activities in other earthquake-struck
reas, providing the availability of good-quality optical remote sen-
or data.
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