

Use of Satellite Radar Observations for Earthquake Response and Risk Assessment

Zhenhong Li ^{a,} Tim Wright ^b, Andrew Hooper ^b, Paola Crippa ^a, Richard Walters ^c, Pablo Gonzalez ^d, John Elliott ^b, Emma Hatton ^b, Barry Parsons ^e

^a COMET, Newcastle University, UK

^b COMET, University of Leeds, UK

^c COMET, Durham University, UK

d COMET, University of Liverpool, UK

e COMET, University of Oxford, UK

"InSAR everywhere, all the time"

(NASA Solid Earth Science Working Group Report, 2002, NASA InSAR Workshop Report, 2004)

We can't give short-term predictions for which faults will fail in earthquakes.

ESA's C-band Sentinel-1

Sentinel-1A

Launch date: 3 April 2014

Repeat cycle: 12 days

Sentinel-1B

Launch date: 25 April 2016

Repeat cycle: 12 days

Sentinel-1 is a Game Changer!

Sentinel-1	Other SAR mission archives				
1. Systematic acquisitions for tectonics and volcanoes: "InSAR everywhere all the time"	Haphazard acquisitions (multiple modes, no unified strategy)				
2. TOPS: 250 km x 1000+ km: Continental scale InSAR	Small areas imaged, swath widths usually less than 100 km.				
3. Small perpendicular baselines, acquisitions every 6/12/24 days, ascending and descending -> high coherence	Often large perpendicular baselines and long gaps between acquisitions - > poor coherence				
4. 20 year operational program, designed for InSAR	Stand-alone missions, often not designed for InSAR				
5. Free, full and open data policy, enables mass processing.	Restricted data access, often commercial pricing				

Data coverage for Turkey: Sentinel-1A only

Data coverage for Turkey: Sentinel-1A + Sentinel-1B

COMET-CEMS processing facility

Command and monitoring

Climate, Environment & Monitoring from Space

processing facility

COMET InSAR Automatic Processing Chain (LiCSAR)

COMET InSAR Processing Chain (Time Series)

The 2015 Ghorka (Nepal) earthquake: CCTV footage of Dabali

USGS ShakeMap : NEPAL

Map Version 6 Processed 2015-04-25 21:32:54 UTC

PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Mod./Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<0.05	0.3	2.8	6.2	12	22	40	75	>139
PEAK VEL.(cm/s)	<0.02	0.1	1.4	4.7	9.6	20	41	86	>178
INSTRUMENTAL INTENSITY	1	11-111	IV	V	VI	VII	VIII	IX	X+

Scale based upon Worden et al. (2012)

Initial location & magnitude comes rapidly from seismology...

v1 EQ + 19 minutes

v2 EQ + 52 minutes

v3 EQ + 83 minutes

v4 EQ + 2 hours

v5 EQ + 4 hours

v6 EQ + 15 hours

Ground shaking map

Thanks to Richard Briggs, Gavin Hayes, Bill Barnhard, USGS

The 2015 Ghorka (Nepal) earthquake: First Sentinel-1A Interferograms

Coseismic #Sentinel1 epicentral interferogram of #NepalQuake available via insarap.org - 34 fringes!

The 2015 Ghorka (Nepal) earthquake: Sentinel-1A coseismic interferograms

Area around Kathmandu moved towards satellite by over 1 m

Elliott et al., Nature Geoscience 2016

USGS ShakeMap: NEPAL

Apr 25, 2015 06:11:26 UTC M 7.8 N28.15 E84.71 Depth: 15.0km ID:us20002926

Map Version 6 Processed 2015-04-25 21:32:54 UTC

PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Mod./Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<0.05	0.3	2.8	6.2	12	22	40	75	>139
PEAK VEL.(cm/s)	<0.02	0.1	1.4	4.7	9.6	20	41	86	>178
INSTRUMENTAL INTENSITY	1	II-III	IV	٧	VI	VII	VIII	IX	X+

Scale based upon Worden et al. (2012)

Initial location & magnitude comes rapidly from seismology...

v1 EQ + 19 minutes

v2 EQ + 52 minutes

v3 EQ + 83 minutes

v4 EQ + 2 hours

v5 EQ + 4 hours

v6 EQ + 15 hours

Ground shaking map

Thanks to Richard Briggs, Gavin Hayes, Bill Barnhard, USGS

Initial location & magnitude comes rapidly from seismology...

v1 EQ + 19 minutes

v2 EQ + 52 minutes

v3 EQ + 83 minutes

v4 EQ + 2 hours

v5 EQ + 4 hours

v6 EQ + 15 hours

v7 EQ + 10 days

Ground shaking map

- (i) Incorporating satellite deformation data changes the predictions of ground shaking.
- (ii) Sentinel-1 can provide the results that allow this to be done routinely.

Disaster Preparedness: The North Anatolian Fault

- 1 PhD 1997-2000 (Wright): 2 ERS Frames / 100 km of fault / ~20,000 km²
- 1 PhD 2009-2012 (Walters): 5 Envisat Tracks / 200km of fault / ~250,000 km²
- 1 PhD 2012-2016 (Hussain): 23 Envisat Tracks / entire fault / ~750,000 km²

Richard Walters, Durham COMET

Satellite Radar (SAR) Missions

Conclusions

- ➤ Sentinel-1 is a game changer Thanks ESA/Copernicus
- ➤ The overall repeat cycle of the current SAR missions (S1, TSX, CSK, ALOS-2 and RadarSAR-2) is 1.6 days, which makes disaster risk responses and assessment possible
- Automatic processing for wide regions can lead to major advances in responding to large earthquakes and preparing for future hazards

Disaster Management Cycle

