

ONU-SPIDER

Insumos para la Reunión Centroamericana de Expertos

Un Sistema de Alerta Temprana

Definición de la EIRD (Glosario 2009)

"El conjunto de *capacidades necesarias* para *generar y difundir información de alerta* que sea *oportuna y significativa*, con el fin de permitir que las personas, las comunidades y las organizaciones amenazadas por una amenaza se preparen y actúen de forma apropiada y con suficiente tiempo de anticipación *para reducir* la posibilidad de que se produzcan *pérdidas o daños*."

Sistemas de Alerta Temprana centrados en la gente

Definición de la EIRD (PPAT 2006) adoptada por CEPREDENAC

Cuatro elementos básicos:

- Conocimiento del riesgo (amenaza, vulnerabilidad, exposición).
- Servicio de emisión de alertas.
- Diseminación de Alertas
- Capacidad de Respuesta

RISK KNOWLEDGE

Prior knowledge of the risks faced by communities.

Are the hazards and the vulnerabilities well known?

What are the patterns and trends in these factors?

> Are maps and data widely available?

WARNING SERVICE

Technical monitoring and warning service.

Are the right parameters being monitored?

Is there a sound scientific basis for making forecasts?

Can accurate and timely warnings be generated?

DISSEMINATION

Dissemination of understandable warnings to those at risk.

> Do the warnings reach those at risk?

Do people understand the warnings?

Do they contain relevant and useful information?

RESPONSE CAPABILITY

Knowledge and preparedness to act by those threatened.

> Do communities understand their risks?

Do they respect the warning service?

Do they know how to react?

Are plans up to date and practiced?

Algunos ejemplos de SATs

SATs en América Central

Sistemas Nacionales:

- Probablemente se implementaron desde hace décadas por los observatorios, pero no hay documentación específica al respecto.
- Se han implementado mayormente para amenazas de gran escala (huracanes, sequías) y en algunos casos para volcanes activos, cuencas específicas y otras amenazas más locales.

Sistemas Comunitarios:

- Se empezaron a implementar desde mediados de los 90s de manera específica como SATs.
- Han enfocado mayormente inundaciones en cuencas menores, aunque en la actualidad enfocan también otras amenazas.
- Se han implementado bajo la coordinación de las entidades nacionales de protección civil.
- Han incorporado por lo general las nociones de SATs de la EIRD y de CEPREDENAC.

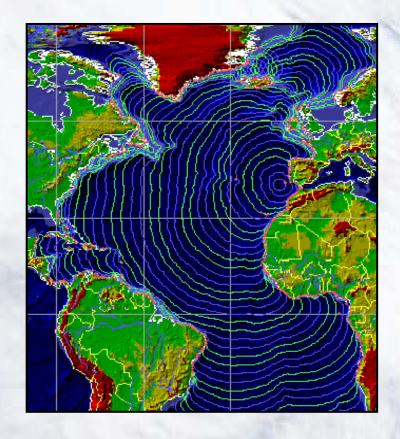
Ejemplos de aplicaciones

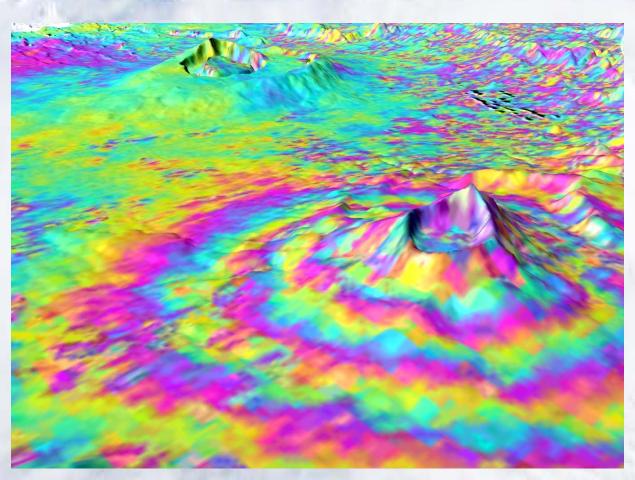
Tecnologías satelitales

Observación de la Tierra

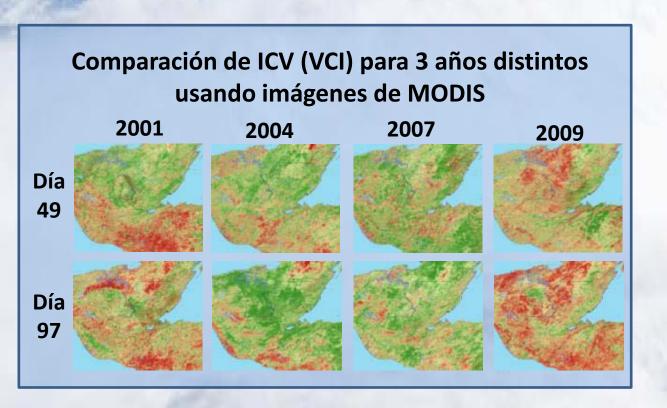
Telecomunicaciones

Posicionamiento y navegación por satélite


Aplicaciones en la meteorología


Desde la década de los 70s se utilizan imágenes satelitales para determinar las trayectorias de huracanes y tormentas tropicales

Telecomunicaciones satelitales en caso de maremotos o tsunamis



Actividad volcánica usando imágenes de radar (interferometría)

Aplicaciones en caso de sequía

Comparación del estado de la vegetación para sequías actuales e históricas

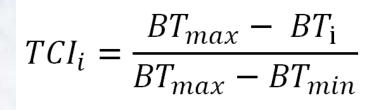
Observando la sequía agrícola a nivel global desde el Espacio

usando

el Sistema de Indices de Stress Agrícola de la FAO (ASIS)

Desarrollado por:

En colaboración con:


http://www.fao.org/climatechange/asis/en/

El Indice de Stress Agrícola (Kogan et al. 1995)

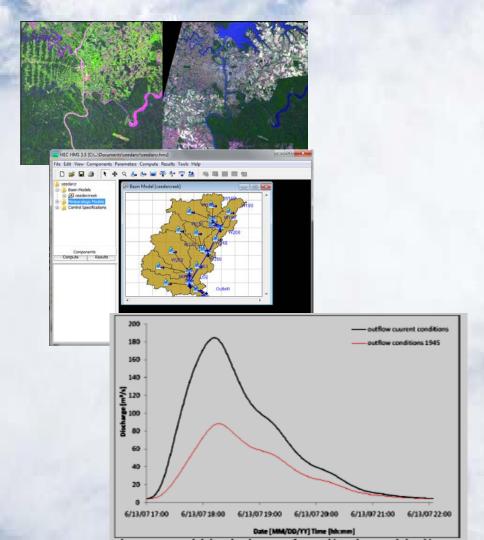
Indice de Condición Vegetal (VCI)

Indice de Condición de Temp. (TCI)

$$VCI_i = \frac{NDVI_i - NDVI_{\min}}{NDVI_{max} - NDVI_{min}}$$

Indice de Salud Vegetal (ISV)

ISV bajo

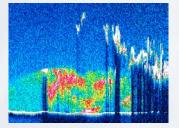

$$ISV = a*VCI + (1-a)*TCI$$

ISV alto

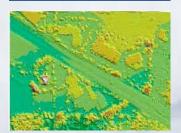
Aplicaciones en caso de inundaciones

Deducción y medición de cambios en cobertura/uso de suelo

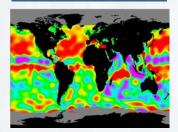
Modelos hidrológicos e hidráulicos

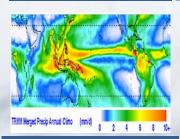


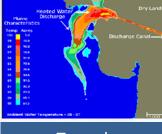
Cambios el comportamiento espacial y temporal de inundaciones

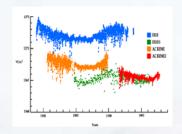

Recomendaciones

Multisepectral


LIDAR Atmosférico

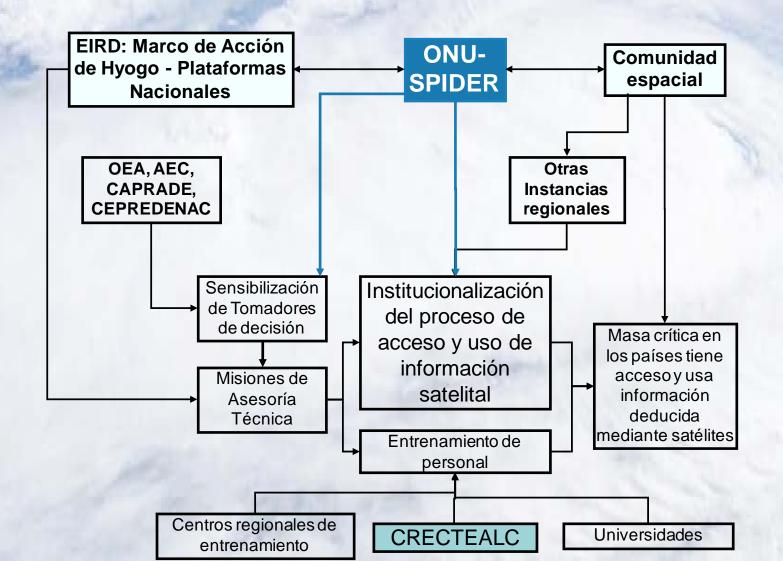

LIDAR de superficie


Radar/ SAR


Altimetría RADAR


Microonda pasiva

Termal

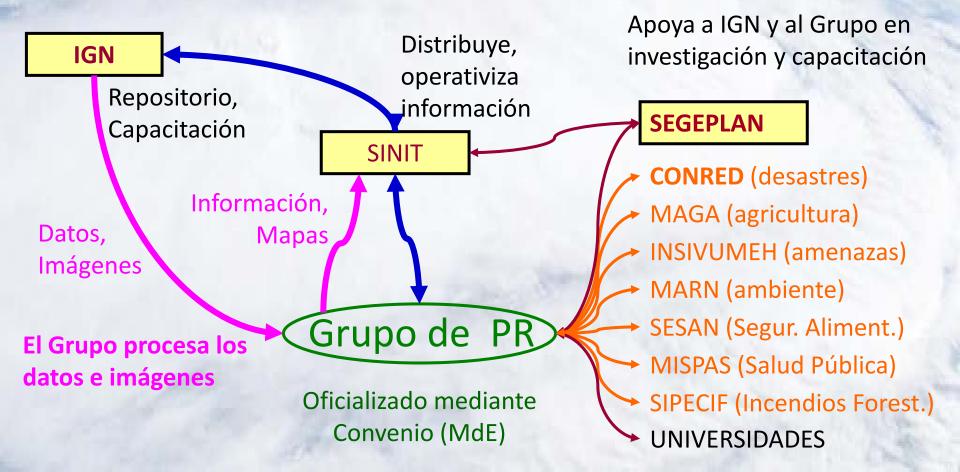

Irradiancia/Fotometría

Hiperespectral

Investigar, sistematizar y propiciar el uso de distintos tipos de datos generados a partir de satélites.

Institucionalizando el uso de información satelital

Institucionalizando el uso de información satelital


Estrategias:

- Promover la <u>institucionalización del uso de información</u> satelital mediante <u>grupos técnicos interinstitucionales</u>.
- Promover políticas que incentiven la <u>participación de todos</u> <u>los sectores de desarrollo</u> en estas actividades.
- Armonizar esfuerzos con entidades y procesos ya existentes en la región (CEPREDENAC, SMIT, CRRH, etc).
- Promover y ayudar a lograr consensos con respecto a métodos y tecnologías a usarse en la región.
- Apoyar a las Plataformas Nacionales de Reducción de Desastres que promueve la EIRD.
- Vincular los esfuerzos en materia de desastres con otros temas como cambio climático y seguridad alimentaria.

Ejemplo de Grupo Interinstitucional

CONCYT

Guatemala

Ejemplos de dos Grupos

Guatemala:

- Grupo Técnico Interinstitucional de Sensores Remotos e Información Geográfica para la Gestión de Riesgo y el Manejo de Desastres - GT-SIGER.
- Carta de Entendimiento entre SEGEPLAN, INSIVUMEH,
 CONRED, IGN y RIC oficial mente firmada en Junio del 2012.
- Grupo nombrado como Project Manager en la activación del Charter en Noviembre el 2012 por sismo.

República Dominicana:

- Equipo Técnico Interinstitucional para la Generación de datos Geoespaciales mediante sensores remotos y sistema de información geográfica para la Gestión de Riesgos y Manejo de Desastres - EIGEO-GR.
- En proceso de firma por Ministros y Directores de 15 instituciones y la UASD.

Recomendaciones

- Combinar datos de campo y de satélites para generar información relevante.
- Fortalecer equipos multidisciplinarios ya coordinados por CENAPRED.
 - Establecer infraestructuras de bases de datos espaciales (IDES) para facilitar el intercambio de datos e información.
- Establecer geo-visores para facilitar la visualización de información geo-espacial.

Recomendaciones

- Realizar talleres, simulaciones y simulacros para propiciar el uso de datos satelitales.
 - Facilitar la interacción entre los niveles (regional, nacional, municipal).
- Documentar y sistematizar experiencias y lecciones aprendidas.
- Incorporar las lecciones aprendidas y las nuevas metodologías.

Muchas gracias por su atención

