

DLR-IRIDeS Joint Workshop on Remote Sensing and Multi-Risk Modeling for Disaster Management

Building damage detection by fusing tsunami numerical modeling and remote sensing technology

Hideomi Gokon, Satomi Hayashi, Shunichi Koshimura, Masashi Matsuoka and Joachim Post

Research question

Which is the best approach to detect building damage in a tsunami affected area?

Remote sensing

Tsunami numerical modeling

Or, should both approaches be integrated?

Remote sensing approach

- The 2011 Tohoku earthquake and tsunami
- TerraSAR-X data (Strip map mode)
- Change detection
- Damage ratio of washed-away buildings

TerraSAR-X data (Sendai city in Japan)

Truth data

Visual inspection

Change detection

Correlation coefficient

Non-damaged areas

→ Higher values

Devastated areas

→ Lower values

Segmentation

Assumption

Similar damage situation → Similar correlation coefficient

Correlation coefficient image was divided into segment with homogeneous changes

Damage estimation

Estimate damage ratio

Result (Remote sensing)

Numerical modeling approach

- Tsunami numerical modeling
 - Flow depth, Current velocity, Hydrodynamic force
- Fragility function
- Damage ratio of washed-away buildings

Tsunami numerical modeling

(Hayashi et al., 2013)

Damage estimation

Fragility function

Fragility curve: Hayashi et al.(2013) 11

Result (Numerical modeling)

Comparison

- On the whole, remote sensing approach shows higher performance
- In some parts, numerical modeling approach is better
 - → large scale buildings, outside of tsunami flooded areas

Integration of these approaches

The advantage of each approach should be utilized.

Two approaches were integrated based on the following rule.

Result (Integration)

Improvements could be confirmed in some parts

Accuracy assessment

(Damage ratio × the number of buildings in a object)

Summary

Building damages were estimated by these approaches.

- Remote sensing approach
- Numerical modeling approach
- Integrated approach

As a result of the comparison,

Integrated approach shows best performance for damage estimation in a tsunami affected area.