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Background

With the rapid development of remote sensing observation technologies, we have

entered an era of remote sensing big data.

> Large-Scale Data =
> Data Quality )
> Data Tags =)

> Efficient Applications =

The amount of remote sensing images has increased
dramatically, due to the recent advances in satellite
technology.

Noisy images, Low-resolution images, Mixed pixel images...

Most of the remote sensing images are untagged. Manual
generation of tags is often time consuming.

Efficient algorithms for large-scale remote sensing images
are highly demanded for practical applications.
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Image Enhancement—Denoising

Nonnegative Tucker Decomposition for Hyperspectral Image Denoising
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Conventional hyperspectral imaging process suffers from issues such as limited illumination
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and short sensing time, which introduce noises into the image acquisition step.




Image Enhancement—Denoising

Nonnegative Tucker Decomposition for Hyperspectral Image Denoising

( ] \ / Block Matching by \
Noised HSI Non-local Similarity

Stack 3D Patch as 3#-order Tensor \ PERFORMANCE COMPARISON OF THE COMPETING METHODS ON THE INDIAN PINES DATASET.
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Nosy | 22134 | 0394 | 0.730 | 18617 | 0117 | 0407 | 16.113 | 0.081 | 0352 | 14175 | 0.054 | 0.302
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Ours 41937 | 0946 | 0975 | 39.026 | 0.912 | 0.939 | 37.012 | 0.862 | 0.917 | 35972 | 0.893 | 0.926
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» Fan Xu, Xiao Bai, Jun Zhou: Non-local similarity based tensor decomposition for hyperspectral image denoising.
ICIP 2017: 1890-1894

» Xiao Bai, Fan Xu, Lei Zhou, Yan Xing, Lu Bai and Jun Zhou. "Nonlocal similarity based nonnegative tucker
decomposition for hyperspectral image denoising”. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, Vol. 11, No. 3, pages 701-712, 2018.
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1 Image Super-Resolution

low-resolution image — high-resolution image
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» Civil : GF-2 geometric resolution 1-4 m, google map’s resolution 0.39 m
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» A high-quality remote sensing image is significant to applications




Image Super-Resolution

High Resolution Absolute Difference

Ground Truth

Low Resolution

low-resolution image # high-resolution image
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» Chen Wang, Yun Liu, Xiao Bai, Wenzhong Tang, Peng Lei, Jun Zhou: Deep Residual Convolutional
Neural Network for Hyperspectral Image Super-Resolution. ICIG (3) 2017: 370-380



Hyperspectral Unmixing
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Mixed pixels are frequent in remotely sensed hyperspectral images due to insufficient spatial
resolution of the imaging spectrometer, or due to intimate mixing effects.
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Macroscopic mixture:
15% soil, 25% tree, 60% grass in a 3x3 meter-pixel

Intimate mixture:

Minerals intimately mixed in a 1-meter pixel

» Lei Tong, Jun Zhou, Yuntao Qian, Xiao Bai, and Yongsheng Gao. "Nonnegative matrix factorization

Remote Sensing, Vol. 54, No. 11, pages 6531-6544, 2016.

based hyperspectral unmixing with partially known endmembers". IEEE Transactions on Geoscience and




01 Background

02 Remote Sensing Image Processing

03 Remote Sensing Image Classification

04 Large-Scale Retrieval




12

Remote Sensing Image Classification

Due to the large volume of untagged remote sensing images, the manual generation of tags is often time
consuming and becomes especially prohibitive.
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Remote sensing image
classification technology is

e W L . significant and important.
Dense residential
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Remote Sensing Image Classification
Object Classification via Feature Fusion Based Marginalized Kernels
[ Softmax } Biv ot Bon 1. We use the SoftMax regression to model the probabilities of
regression ~ each sample object belonging to the object classes.
[Training set} { Marginalized J -{ SVM-based } 2. We introduce an approximate method for calculating the
kernel classifier class-to-class similarities between different classes.
{ Class-to-class } dE) Krx) 3. The obtained fusion and similarity information are integrated
Sinflansy into a marginalized kernel to build a support vector machine
classifier.
M Example of object representation with three types of
“ ‘ ‘ 4 | | ‘ ” features concatenated. Local self-similarity (LSS) and
h " ’m ’ | l s || _WIIH ‘ |m gray-level co-occurrence matrices (GLCMs) stand for
N~—— \—g/——/ N~—— shape and texture features, respectively.
LSS Spectral GLCM

» Xiao Bai, Chuntian Liu, Peng Ren, Jun Zhou, Huijie Zhao, Yun Su: Object Classification via Feature Fusion
Based Marginalized Kernels. IEEE Geosci. Remote Sensing Lett. 12(1): 8-12 (2015)
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Remote Sensing Image Classification

Object Classification via Feature Fusion Based Marginalized Kernels

- Lawn

Classification result

» Xiao Bai, Chuntian Liu, Peng Ren, Jun Zhou, Huijie Zhao, Yun Su: Object Classification via Feature Fusion
Based Marginalized Kernels. IEEE Geosci. Remote Sensing Lett. 12(1): 8-12 (2015)
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Remote Sensing Image Classification

Hyperspectral Image Classification

(a) Training the initial classifier for each class by using
X al el ' Maximizing scores of samples tradltlonal SVM
(@) Training original classifier (b) Balancing each samples (b) Balancing the spectral bands for each sample by

maximizing the modified SVM classification scores.
(c) Computing the spectral weight vector for each class.
vy (d) Training new classifiers by using weighted samples.

Retraining the classifier After weighting

(d) Training new classifier for the weighted (C) Computing weight vector for each class
samples

» Cheng Yan, Xiao Bai, Peng Ren, Lu Bai, Wenzhong Tang, Jun Zhou: Band Weighting via Maximizing Interclass
Distance for Hyperspectral Image Classification. IEEE Geosci. Remote Sensing Lett. 13(7): 922-925 (2016)
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Large-Scale Retrieval

Fast and accurate retrieval method
for large-scale remote sensing
Image datasets is highly demanded.

» The amount of remote sensing images has increased dramatically, due to the recent advances in
satellite technology.

» The efficiency of many traditional methods can’t meet the requirements of practical application.
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Binary Coding

Hashing-based efficient retrieval

Data 1

Data 2

Data N

S+ -1+ e -1 | 48 bits
1079 s to calculate
Hamming distance
+1)-1 | 41| +1| e +1 | 48 bits
T T T T T +1 | 48 bits  Store 1.8 billion data
with 10G RAM
» Transform remote sensing images into binary codes
» The Hamming distances between binary codes preserve the pairwise similarities of the data
» Significantly reduce the storage space for large-scale data
» Calculating the Hamming distance is very fast in computer
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Binary Coding

H(x) =[h(x),h, (%),.... e ()] <{0,1}"

oo 110110 010110 soe 001000 000001

) - o -

Hamming distance: 1 < 4

1. Learn a set of hash functions h;(:) to convert input images to binary codes.
2. Organize all the codes in a hash table.

3. Return all images within a small radius of query in database using hash table.
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Locality Sensitive Hashing

Locality Sensitive Hashing
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A simple LSH hash functions: hy(x) = Sgn(w,fx)

» M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-sensitive hashing scheme based on p-stable
distributions,” in Annual Symposium on Computational Geometry, 2004.
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Large-Scale Retrieval
Data-Dependent Hashing Based on p-Stable Distribution
-0.7
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» Xiao Bai, Haichuan Yang, Jun Zhou, Peng Ren, Jian Cheng: Data-Dependent Hashing Based on p-Stable
Distribution. IEEE Trans. Image Processing 23(12): 5033-5046 (2014)
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Large-Scale Retrieval

Data-Dependent Hashing Based on p-Stable Distribution

® Unsupervised Hashing For Preserving Euclidean Distance

guantization error: objective function:
> Gsign(U] o) — U )? argmin |[sign(UR)" V) — (UR)" V|7
ik

® Supervised Hashing By Incorporating Semantic Similarity

supervised semantic similarity: objective function:
o _ L tO=L0); argmin > §;; i — ;I
Y 0, otherwise. iJ

n
n
subject to: y; € {0, 1}7*!, Zy,- = 51,

1

» Xiao Bai, Haichuan Yang, Jun Zhou, Peng Ren, Jian Cheng: Data-Dependent Hashing Based on p-Stable
Distribution. IEEE Trans. Image Processing 23(12): 5033-5046 (2014)
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Large-Scale Retrieval

Adaptive Hash Retrieval with Kernel based Similarity

O Threshold of similarity €
O Threshold of 2-NN

Data points in cluster j

Data points in cluster i

Since the similarity or distance to the nearest neighbors varies considerably for different data samples, simple

thresholding on the similarity function returns different numbers of neighbors.

» Xiao Bai, Cheng Yan, Haichuan Yang, Lu Bai, Jun Zhou, Edwin Robert Hancock: Adaptive hash retrieval
with kernel based similarity. Pattern Recognition 75: 136-148 (2018)
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Large-Scale Retrieval

Adaptive Hash Retrieval with Kernel based Similarity

We present a novel adaptive similarity measure which is consistent with k-nearest neighbor search, and prove

that it leads to a valid kernel if the original similarity function is a kernel function.

1. We use normalized Gaussian kernel to construct a new similarity function:
K (Xi,Xj) = exp(—(d(xi,xj))*/20?%)
2. We propose kernel reconstructive hashing that preserves the similarity defined by an arbitrary kernel using a

compact binary code. min Y (%, %;) — & (X, X}))?
XiXjeX

Our objective formulation is learning a set of r hash functions which generate the binary code of x; as a vector
X = [h1 (%), ha(x;). ..., hr (x;)]

» Xiao Bai, Cheng Yan, Haichuan Yang, Lu Bai, Jun Zhou, Edwin Robert Hancock: Adaptive hash retrieval
with kernel based similarity. Pattern Recognition 75: 136-148 (2018)
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Adaptive Hash Retrieval with Kernel based Similarity
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» Xiao Bai, Cheng Yan, Haichuan Yang, Lu Bai, Jun Zhou, Edwin Robert Hancock: Adaptive hash retrieval
with kernel based similarity. Pattern Recognition 75: 136-148 (2018)
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