Lake Chad has shrunk dramatically over the last four decades due to a decrease in rainfall and an increase in the amount of water used for irrigation projects. Its surface area was 25 000 sq km in the early 1960s, compared with 1350 sq km in 2001. Image acquired 19 December 2007 by the MERIS (Medium Resolution Imaging Spectrometer) instrument aboard ESA’s Envisat satellite. Image: ESA, CC BY-SA 3.0 IGO.


Drought may be considered in general terms a consequence of a reduction over an extended period of time in the amount of precipitation that is received, usually over a season or more in length. It is a temporary aberration, unlike aridity, which is a permanent feature of the climate. Seasonal aridity (i.e., a well-defined dry season) also needs to be distinguished from drought. It should be noted that drought is a normal, recurrent feature of climate, and it occurs in virtually all climatic regimes (UNDDR).

Facts and figures

Droughts are often predictable: periods of unusual dryness are normal in all weather systems. Advance warning is possible (WHO).

By 2025, 1.8 billion people will experience absolute water scarcity, and 2/3 of the world will be living under water stressed conditions (UNCCD).

Drought can be defined according to meteorological, agricultural, hydrological and socio-economic criteria.

  • Meteorological, when precipitation departs from the long-term normal
  • Agricultural, when there is insufficient soil moisture to meet the needs of a particular crop at a particular time. Agricultural drought is typically evident after meteorological drought but before a hydrological drought
  • Hydrological, when deficiencies occur in surface and subsurface water supplies
  • Socio-economic, when human activities are affected by reduced precipitation and related water availability. This form of drought associates human activities with elements of meteorological, agricultural, and hydrological drought (FAO).

Related content on the Knowledge Portal

SAM Satellite

Gaofen-2 is a follow-on mission of the Gaofen-1technology demonstration mission, a series of high-resolution optical Earth observation satellites of CNSA (China National Space Administration), Beijing, China. GF-2 is part of the CHEOS (China High Resolution Earth Observation System) family.
The mission goal of GF-2 to implement sub-meter level, high geographical accuracy Earth surface imaging, promoting application of CHEOS satellites and its social and economic benefits, meanwhile to make breakthrough in key technologies like fast roll and high stable attitude control, long focal length large f-number, lightweight camera design and long life bus design, enhancing China's civilian imaging satellite abilities and reliability.

Instrument: PMC-2 (PAN and Multispectral Camera Suite-2)
- 2 barrel-mounted panchromatic cameras
- 2 MS (Multispectral) cameras
- swath width: 23km for each camera / combined swath width: 45.3km

Launch date:

SPOT-7 is a high-resolution wide-swath imaging spacecraft built and operated by Airbus Defence and Space taking over the majority of Spot Image after the government support of the SPOT program was terminated. SPOT-6 – launched in 2012 – and SPOT-7 are identical spacecraft, based on the AstroSat-250 satellite bus and use the NAOMI (New AstroSat Optical Modular Instrument) payload to acquire optical imagery to ensure the continuity of SPOT data, building on experience gained through previous missions, particularly SPOT-5 that launched in 2002.
The SPOT-7 spacecraft is built for a ten-year mission featuring two NAOMI cameras to cover a 60-Kilometer ground swath, 120km using single-pass mosaic imaging. Overall, the satellite can achieve a resolution of two meters in panchromatic and eight meters in multispectral mode covering the visible and near-infrared spectral bands.

Instrument: 2x NAOMI (New AstroSat Optical Modular Instrument)
- 60km swath width... read more

Launch date:

Launched in June 2014 with an expected life-time of more than 7 years, Deimos-2 is an agile, high resolution satellite that became the only European fully-private satellite capable of providing sub-metric multispectral imagery. From a 620-km ascending sun-sync orbit, it has a 12/24-km swath (depending on the imaging mode), stereo-par capability and ±45º off-nadir tilting capacity. Its multispectral camera has a panchromatic and 4 spectral bands (R,G,B,NIR), at 10 bits. This allows Deimos-2 to provide 75-cm pan-sharpened imagery.

Deimos-2 was designed to provide a cost-effective and highly responsive service to cope with the increasing need of fast access to sub-metric imagery. As evidence of this, it provides near-real time image tasking, downloading, processing and delivery to the end user. It has a collection capacity of more than 150,000 km2/day with a two-day average revisit time worldwide. The whole Deimos-2 ground segment has been completely developed in-house by... read more

Launch date:

ALOS-2 (Advanced Land Observation Satellite 2) is the follow-on JAXA L-SAR satellite mission of ALOS (Daichi) approved by the Japanese government in late 2008. The overall objective is to provide data continuity to be used for cartography, regional observation, disaster monitoring, and environmental monitoring.
The post-ALOS program of JAXA has the goal to continue the ALOS (nicknamed Daichi) data utilization - consisting of ALOS-2 (SAR satellite) and ALOS-3 (optical satellite) in accordance with Japan's new space program.

The state-of-the-art L-band Synthetic Aperture Radar (SAR) aboard ALOS-2, which is an active microwave radar using the 1.2 GHz frequency range, which, in responding to society's needs, has enhanced performance. The SAR is capable of observing day and night, and in all weather conditions.

ALOS-2 has a spotlight mode (1 to 3 m) and a high resolution mode (3 to 10 m). It allows comprehensive monitoring of disasters... read more

Launch date:

Sentinel-1 is a two satellite constellation with the prime objectives of land and ocean monitoring. The goal of the mission is to provide C-Band Synthetic Aperture Radar (SAR) data continuity following the retirement of ERS-2 and the end of the Envisat mission.
To accomplish this the satellites carry a C-SAR sensor, which offers medium and high resolution imaging in all weather conditiions. The C-SAR is capable of obtaining night imagery and detecting small movement on the ground, which makes it useful for land and sea monitoring.
Sentinel-1 will work in a pre-programmed operation mode to avoid conflicts and to produce a consistent long-term data archive built for applications based on long time series.
The mission benefits numerous services. For example, services that relate to the monitoring of Arctic sea-ice extent, routine sea-ice mapping, surveillance of the marine environment, including oil-spill monitoring and ship detection for maritime security, monitoring... read more

Launch date:

The FY-3 series of CMA/NSMC (China Meteorological Administration/National Satellite Meteorological Center) represents the second generation of Chinese polar-orbiting meteorological satellites (follow-on of FY-1 series). The FY-3 series represents a cooperative program between CMA and CNSA (China National Space Administration); it was initially approved in 1998 and entered full-scale development in 1999. Key aspects of the FY-3 satellite series include collecting atmospheric data for intermediate- and long-term weather forecasting and global climate research.
The FY-3 series satellites monitor large-scale meteorological disasters, weather-induced secondary natural hazards and environment changes, and provides geophysical parameters for scientific research in climate change and its variability, climate diagnosis, and predictions. The FY-3 series renders global and regional meteorological information for aviation, ocean navigation, agriculture, forestry, marine activities,... read more

Launch date:

KOMPSAT-5 is an earth observation satellite equipped with Korea's first all-weather SAR.
The SAR mounted on KOMPSAT-5 emits microwaves to an object on the ground and synthesizes the reflected signal to produce an image. It enables ground observation even during nighttime and poor weather conditions.
As the SAR image can supplement the optical camera, which can record only the visible light spectrum, it is utilized in mutual supplementary operations with the high-resolution optical images of KOMPSAT-3 and KOMPSAT-3A.
KOMPSAT-5 observes the Korean Peninsula four times a day. The transmitted image data are used for public safety, natural disaster forecasts, land/resource management and environmental monitoring.

The primary mission of the KOMPSAT-5 system is to provide high resolution mode SAR images of 1 meter resolution, standard mode SAR images of 3 meter resolution and wide swath mode SAR images of 20 meter resolution with viewing conditions of the incidence... read more

Launch date:

Resurs-P1 is a Russian Earth observation satellite designed and developed at TsSKB Progress (Progress State Research and Production Space Center) in Samara, Russia. Roskosmos is funding the project (owner and operator of the spacecraft under the Russian Federal Space Program), the commercial data distributor is Sovzond JSC of Moscow. The spacecraft is operated by NTs OMZ (Research Center for Operational Earth Monitoring), Moscow, Russia.

Resurs-P1 is meant to replace the Resurs-DK, a previous generation spacecraft, which was launched on June 15, 2006.

Resurs-P carries the Geoton-L1 hyperspectral imaging payload as the main imaging instrumet. The optics have an apperture of 0.5 m and provides images with a ground resolution of 1.0 m in panchromatic mode and a resolution of 3 to 4 m in color mode. The Geoton-L1 system has 7 passbands and a 216-channel hyperspectral imager.

Aditionallym the KShMSA wide field multispectral camera is... read more

Launch date:

The Proba-V satellite may only be slightly larger than a washing machine, but it is tasked with a full-scale mission. This miniature satellite is designed to map land cover and vegetation growth across the entire globe every two days. Over the last decade 'Proba' has become synonymous with small high-performance satellites, designed around innovation. The two previous satellites in the series were demonstration missions to give promising technologies an early chance to fly in space. They were overseen by ESA’s Directorate of Technical and Quality Management. Although designed as a demonstration mission, the success of the first Proba satellite led to it being operated as an Earth observation Third Party Mission. Proba-1 carries a high-resolution imaging spectrometer. 

The 'V' stands for Vegetation – a lighter but fully functional redesign of the ‘Vegetation’ imaging instrument previously flown on France’s full-sized Spot-4 and Spot-5 satellites.

Launched on 7 May 2013... read more

Launch date:

Gaofen-1 (gao fen = high resolution) is the first of a series of high-resolution optical Earth observation satellites of CNSA (China National Space Administration), Beijing, China. The civilian HDEOS (High-Definition Earth Observation Satellite) program was proposed in 2006, it received government approval and was initiated in 2010. China plans to launch six HDEOS spacecraft between 2013 and 2016. The major users of the observation data will be the Ministry of Land and Resources, Ministry of Environmental Protection, and the Ministry of Agriculture.
The GF-1 spacecraft was launched on April 26, 2013 on a CZ-2D (Long March -2D) vehicle from the JSLC (Jiuquan Satellite Launch Center) in northwest China.

PMC (PAN and Multispectral camera)
WFI (Wide Field Imager)

Launch date:


Hazard group

Terms in the same hazard group

Zircon - This is a contributing Drupal Theme
Design by WeebPal.