#### The use of satellite data for drought monitoring & food security in Ukraine in the context of climate change

<u>Sergii Skakun<sup>1,2</sup></u>, Nataliia Kussul<sup>1,2</sup>, Felix Kogan<sup>3</sup>, Tatiana Adamenko<sup>4</sup>, Oleksii Kravchenko<sup>1</sup>, Andrii Shelestov<sup>1,2,5</sup>, Olga Kussul<sup>2</sup>, Andrii Kolotii<sup>1,2</sup>

<sup>1</sup>Space Research Institute NASU-NSAU
 <sup>2</sup>National Technical University of Ukraine "KPI"
 <sup>3</sup>National Oceanic and Atmospheric Administration
 <sup>4</sup>Ukrainian Hydrometeorological Center
 <sup>5</sup>National University of Life and Environmental Sciences of Ukraine

Under support of the US CRDF grant "Analysis of climate change & food security based on remote sensing & in situ data sets" (no. UKB2-2972-KV-09)



#### Content

- Objective of the study
- Climate in Ukraine
- Methodology
  - VHI for drought monitoring
  - Empirical regression models
  - Crop growth simulation model (WOFOST)
- Results
- Discussion & conclusions





<KД

# **Objective of the study**

- The two main components of crop production monitoring are
  - crop yield forecasting and
  - crop area estimation.
- Accurate crop yield forecasts several months in advance of the harvest is crucial at global, national and region scale
- Yield is an indicator of droughts
- Ukraine
  - 8th largest exporter and 10th largest producer of wheat in the world in 2011, world leader producer of sunflower oil
- Objectives
  - to assess relative efficiency of using satellite data for winter wheat yield forecasting for Ukraine at oblast level
  - to compare performance of regression models to crop growth simulation

#### 1960-2010 Average Annual Temperature (deg C) - Mean for UKRAINE



# 1960-2010 Total Annual Precipitation (mm) - Mean for UKRAINE

Annual **42.5** Warm **39.5** Cold **-23.0** 

P/50y growth (mm)

<u>GLOBAL</u> <u>No Change</u>

CKA



#### Snow Depth (a), Abs Min Winter T in Deg & % Winter Wheat Kill Area (c), UKRAINE



# Dynamics: Drought Detection & Monitoring 2010, RUSSIA, UKRAINE

#### Vegetation Health



Vegetation Condition in 2010 from AVHRR's NOAA-18

<u>The method</u> is based on estimation of green canopy stress/no stress from indices, characterizing moisture (M) and thermal (T) conditions of vegetation canopy (Kogan 1990, 1997). These conditions are derived from the reflectance/emission in the red (R), near infrared (NIR) and infrared (IR, 10.3-11.3 µm) parts of solar spectrum measured by the Advanced Very High Resolution Radiometer (AVHRR) flown on the NOAA afternoon polar-orbiting satellites since 1981.

#### Percent Drought Area & Intensit 2001-2011



<KA

# Existing approaches to yield forecasting



#### Empirical models

- connect crop yield with some selected predictors (vegetation indices, meteorological observations)
- Pros
  - require little data inputs
  - easy to implement
- <u>Cons</u>
  - lack robustness and generalization ability
  - data-driven, i.e. their performance strongly depends on available datasets

#### Crop growth models

- simulate the growth of crops to retrieve biophysical crop parameters such as crop production, biomass, water use, etc.
- <u>Pros</u>
  - quite generic and robust
- <u>Cons</u>

<K<u>I</u>

- numerous input parameters to run the model
- proper adaptation still needed



#### Data used



- MOD13 product (NDVI) at the 250 m resolution for 2000-2011
- ESA Global Land Cover map (GlobCover) at the 300 m resolution for 2008
- Monthly meteorological observations from
  180 stations in Ukraine for 2000-2011
- Official statistics of winter wheat yield for Ukraine at oblast level for 2000-2011





# Methodology

- Empirical regression-based model that uses as a predictor 16-day NDVI composites derived from MODIS
  - NDVI averaged for oblasts by crop masks
  - trend eliminated from yield
  - robust regression
  - model specific for each oblast
- Adapted for Ukraine Crop Growth Monitoring System (CGMS) that is based on WOFOST crop growth simulation model and meteorological parameters [UHMI]





# Methodology – cont'

- Empirical regression-based model that uses as predictors meteorological parameters
  - parameters
    - Maximum temperature
    - Minimum temperature
    - Average temperature
    - Precipitation
    - Soil moisture
      - 0-20 cm depth
      - Available for months: Sept, Oct, Apr, May, June
  - Non-linear multivariate regression Gaussian process



## **Efficiency** assessment

- Cross-validation
  - leave-one-out cross-validation (LOOCV)
  - using a single observation from the original sample as the testing data, and the remaining observations as the training data
- Criteria

dКД

- RMSE on testing data RMSE =

$$E = \sqrt{\frac{1}{n} \sum_{i} (P_i - O_i)^2}$$

- *P<sub>i</sub>* and *O<sub>i</sub>* are predicted and observed winter wheat yields
- Relative efficiency Rel.eff. =  $\frac{V(Y_{sample})}{V(Y_{satellite})} = \frac{\frac{1}{n}\sum_{i}(dY_{i})^{2}}{RMSE^{2}}$ -  $dY_{i}$  deviation from trend

#### Results for NDVI regression modelcont'

 Relative efficiency and coefficient of determination of the regression model for different agro-climatic zones averaged by oblasts

|                    | Model 2000-2009 |          | Model 2000-2010 |          |
|--------------------|-----------------|----------|-----------------|----------|
| Agro-climatic zone | Rel. eff.       | R-square | Rel. eff.       | R-square |
| Plane-Polissya     | 1.182           | 0.479    | 1.177           | 0.433    |
| Forest-Steppe      | 1.576           | 0.667    | 1.532           | 0.680    |
| Steppe             | 1.883           | 0.804    | 1.894           | 0.796    |

<KA

### Results for NDVI regression modelcont'



dКД



### **Comparison of models**

- All three approaches were used to forecast winter wheat yield for independent data sets for 2010 and 2011,
  - i.e. on data that were not used within model calibration process

| Model                      | RMSE for 2010, t ha <sup>-1</sup> | RMSE for 2011, t ha <sup>-1</sup> |
|----------------------------|-----------------------------------|-----------------------------------|
|                            |                                   |                                   |
| MODIS NDVI (2000-2009)     | 0.794                             | 0.585                             |
| MODIS NDVI (2000-2010)     | -                                 | 0.625                             |
| Meteorological (2000-2009) | 0.779                             | 0.565                             |
| CGMS (2000-2009)           | 0.304                             | -                                 |
| CGMS (2000-2010)           | -                                 | 0.579                             |



<KA

# Comparison of models - cont



 Histogram of the RMSE values for winter wheat yield forecasting for 2010 (A) and 2011 (B)



# Winter wheat forecast for 2012

• Operational forecasting of winter wheat yield Ukraine for 2012 based on Earth observation



(KA



### Conclusions

- NDVI-based regression model was effective in producing yield forecasts in April-May, i.e. 2-3 months prior to harvest
- Relative efficiency of NDVI-based model was dependent on agro-climatic zones ranging from 1.2 to 1.9
- The sign of errors for all three approaches was the same
- Drought area in Ukraine does not experience any trend after 2000, although the last 50-year country average annual temperature increased 1.45°C (twice above the global increase)
- Total annual precipitation increased by 40 mm offsetting drought intensification due to a warmer climate.



# E Constantino de la constant





# Thank you!