Towards a rapid, multi-scale assessment of earthquake vulnerability

based on satellite remote sensing and omnidirectional imaging

M. Wieland, M. Pittore, S. Parolai, J. Zschau
GFZ Potsdam, Section 2.1 Earthquake Risk and Early Warning
Earthquake Model Central Asia (EMCA) Inventory Data Capture Tools (IDCT)
Motivation

- **Seismic vulnerability of buildings** is a key component in risk assessment.

- Best results come from a thoroughly (outside and inside) assessment of a building by experts, **but:**

 - **Inventory data** is often out-of-date, spatially fragmented or highly aggregated.

 - **Need for new approaches** to estimate building inventory and thus vulnerability in a rapid, standardized, comparable and scalable way.
Vision

- A rapid visual survey can lead to a reasonable first assessment over broad areas.
- By coupling remote sensing (topview) with omnidirectional imaging (streetview), this could be done in an optimal way (in terms of time and resources).

- Open-source tools, low-cost data sources.
- Globally applicable on regional and local scale.
Overview of the approach

Probabilistic Framework

Inventory Database

Hazard Assessment + Vulnerability Assessment = Risk Assessment
Analysis of medium-resolution satellite images

Stage of Stratification

Pixels

Workflow / Results

Homogenous areas in terms of building type and age

Intersection

Building types

Age of built-up areas

object-oriented LULCC

Change-detection

Homogenous areas (unlabeled)

Unsupervised Segmentation

Landsat Image t1

Landsat Image t2

Landsat Image t3

Pixels → Segments → Thematic classes → Urban Structure Types
Analysis of medium-resolution satellite images

Stage of Stratification

Urban Structure Types

Urban Structure Type: 8
Type: 1-2 storey masonry, brick
Age: built between 1994 and 2009

Urban Structure Type: 10
Type: 3-6 storey brick, concrete, panel
Age: built before 1977

Urban Structure Type: 16
Type: industrial, commercial
Age: built before 1977

Bishkek
Stratified sampling and analysis of high-resolution satellite images

Sample areas

Extraction of building footprint and location

Building shape, area, roof-type, roof-color/-material, etc.
Acquisition and analysis of high-resolution omnidirectional images

Omnidirectional image stream (Bishkek 2010)
Acquisition and analysis of high-resolution omnidirectional images

Automated height measurement from 3d-points

Vertical shape, soft-storey detection, no. of windows, etc.
+ manual image interpretation by local (+global) experts from civil-engineering
Data integration

- **Priors from medium-resolution satellite images:**
 - Estimated Age
 - Land-Use / Land-Cover

- **Information from high-resolution satellite images:**
 - Building footprints
 - ...

- **Information from omnidirectional images:**
 - Estimated Height of Structures
 - ...

- **Priors from manual data entry:**
 - Expert knowledge
 - Ancillary data
Vulnerability estimation (EMS-98): Bayesian Network

Age: 1994-2009
No. of storeys: 9
Type: 5-9 storey, concrete, panel, frame
Vuln: E
Conclusion

- Stratified sampling using remote sensing helps to focus local analysis.
- Omnidirectional imaging: fast deployed, easily operated.
- Feature extraction from multiple image sources proved successful.
- Bayesian approach to data integration seems promising.

- Approach is scalable, flexible and transferable.
- Acquisition time and costs could be significantly reduced.

- Need to further strengthen the use of open source GIS and RS software.
- Need to improve geo-data access already in the pre-disaster phase.
- Global initiatives need interaction with local experts.
Thank you for your attention!