Verifying Estimations of Tsunami Inundation Velocity and Building Damage by Tsunami Inundation Modeling

2014.09.19
DLR-IRIDeS Joint Workshop

Satomi Hayashi, Bruno Adriano
Graduate School of Engineering, Tohoku University

Erick Mas, Shunichi Koshimura
International Research Institute of Disaster Science, Tohoku University

Laboratory of Remote Sensing and Geoinformatics for Disaster Management, IRIDeS, Tohoku University
Background

Major factors in destruction of buildings

- 8 sec after flood
- 10 sec after flood

The 2011 Tohoku tsunami (At Fuzutsuka, Wakabayashi-ku, Sendai)

Hydrodynamic force against structure

\[F = \frac{1}{2} C_D \rho u^2 D \]

- \(C_D \): drag coefficient
- \(\rho \): water density
- \(u \): the current velocity
- \(D \): the inundation depth

It is important to obtain tsunami velocities accurately for estimating structural damages.

Problems with measuring inland tsunami velocity

- Three methods: field survey, survivor video analysis, and numerical modeling.

Simulation results have not been sufficiently validated.
Objective & Study Flow

Objective
Improving tsunami inundation modeling with regard to tsunami inundation velocity in order to estimate destruction of building.

STEP 1 Verification of Tsunami Inundation Modeling

- Measured vel.
- Comparison
- Modeled vel.

Find problems with modeling and improve its reproducibility.

STEP 2 Development of New Roughness Coefficient Model

- Tsunami fragility functions
- Reference values of structural destruction
- Integration
- Time-dependent building destruction model

Develop new composite equivalent roughness coefficient model reflecting the devastated buildings.
Values of tsunami front and flow velocities were estimated by aerial video analysis.

- Tsunami front velocity: the speed of tsunami front moving
- Tsunami flow velocity: the speed of flow within flooding zone
Methodology of Aerial Video Analysis

STEP 1

1. Geometric Correction

 - Calibrate and rectify by 2-D projective transformation.
 - Mapping the tsunami front and the debris on pre-event image.

2. Measure Tsunami Velocity

 Tsunami front vel.

 \[v_p = \frac{\Delta x}{\Delta t} \]

 - The distance between two tsunami front lines is divided by the time.

 Tsunami flow vel.

 \[v_f = \frac{\Delta x}{\Delta t} \]

 - The movement distance of floating objects per unit time.
Within 1 km inland from the shoreline, tsunami velocities reached …

» Tsunami front velocities: 7 m/s
» Tsunami flow velocities: 8 m/s

Tsunami flow velocities reduced as the inland distance gets longer.
Simulation of The 2011 Tohoku Tsunami

Tsunami numerical modeling

<table>
<thead>
<tr>
<th>Governing equation</th>
<th>Non-linear shallow water theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical scheme</td>
<td>Staggered leap-frog scheme</td>
</tr>
<tr>
<td>Grid size (Inland)</td>
<td>10 m × 10 m</td>
</tr>
<tr>
<td>Tsunami source</td>
<td>Satake et al. (2013)</td>
</tr>
<tr>
<td>Roughness coefficient</td>
<td></td>
</tr>
</tbody>
</table>
 - The composite equivalent roughness coefficient model
 (Aburaya and Imamura, 2002; Imai et al., 2013)
 - Manning's roughness coefficient model
 (Kotani et al., 1998) |

Tsunami run-up modeling conditions

<table>
<thead>
<tr>
<th>Tsunami control forest</th>
<th>Buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Surviving</td>
</tr>
<tr>
<td>Case A (pre-disaster condition)</td>
<td>○</td>
</tr>
<tr>
<td>Case B (post-disaster condition)</td>
<td>×</td>
</tr>
</tbody>
</table>
Reproducibility of Tsunami Velocities

Tsunami front velocities

- **Case A** (pre-disaster)
- **Case B** (post-disaster)

» The reproducibility of **Case A** is higher than **Case B**.

Effects of structures and land use on tsunami inundation characteristics are well reproduced.

» Devastated buildings and drifting debris at tsunami front affect the tsunami penetration.

Need to improve the tsunami front boundary conditions including these resistances.
Reproducibility of Tsunami Velocities

Tsunami flow velocities

» The **post-disaster** condition is quite consistent with measured velocities.

The pre-disaster condition was the most consistent to yield good estimates of tsunami front velocity.

The reproducibility of tsunami flow velocity was quite good in the **post-disaster** condition.

Need to model the tsunami front boundary conditions considering the devastated buildings and the drifting debris.
Objective & Study Flow

Objective

Improving tsunami inundation modeling with regard to tsunami inundation velocities in order to estimate building destruction.

STEP 1
Verification of Tsunami Inundation Modeling

- Measured vel.
- Comparison
- Modeled vel.

Find problems with modeling and improve its reproducibility.

STEP 2
Development of New Roughness Coefficient Model

- Tsunami fragility functions
- Reference values of structural destruction
- Integration
- Time-dependent building destruction model

Develop new composite equivalent roughness coefficient model reflecting the devastated buildings.
Methodology of New Model

The Time-dependent building destruction model

1. Tsunami fragility functions

![Tsunami fragility functions graph]

2. Reference values for structural destruction

<table>
<thead>
<tr>
<th>Material</th>
<th>Reference Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wooden</td>
<td>h ≥ ...</td>
</tr>
<tr>
<td>Steel</td>
<td>F ≥ ...</td>
</tr>
<tr>
<td>RC</td>
<td>u ≥ ...</td>
</tr>
</tbody>
</table>

Adriano et al. (2014)
Hayashi et al. (2013)
Narita and Koshimura (2013)
Suppasri et al. (2012)

» Combining tsunami fragility functions and reference values of structural destruction with the tsunami numerical modeling.

Roughness coefficients are gradually changed in response to the time variation of building damage.
Methodology of New Model

The Time-dependent building destruction model

1. Calculating the number of buildings being simultaneously damaged from fragility curves

- Count the number of exposed buildings N in 1m intervals of inundation depth.
- The multiplication of the number of exposed buildings N and the damage probability $P(x_1, \cdots, x_i)$ (Adriano et al., 2014)

The number of buildings being simultaneously damaged was calculated.
Methodology of New Model

The Time-dependent building destruction model

2 Selecting devastated buildings by reference values for structural destruction

» Determine the reference values for structural destruction by surveyed data and preceding studies.

Selected the appropriate buildings and washed out in descending hydrodynamic force order.

<table>
<thead>
<tr>
<th>Material</th>
<th>Sendai city</th>
<th>Natori city</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wooden</td>
<td>Inundation depth (h \geq 3.5) m (MLIT, 2011)</td>
<td>Inundation depth (h \geq 1.5) m (MLIT, 2011)</td>
</tr>
<tr>
<td>Steel</td>
<td>Inundated parallel area (A_C \leq 6.8 \times h) (Matsutomi et al., 2013)</td>
<td>Inundated parallel area (A_C \leq 6.8 \times h) (Matsutomi et al., 2013)</td>
</tr>
<tr>
<td>RC</td>
<td>Inundated parallel area (A_C \leq 6.8 \times h) (Matsutomi et al., 2012)</td>
<td>Inundated parallel area (A_C \leq 6.8 \times h) (Matsutomi et al., 2012)</td>
</tr>
</tbody>
</table>
Recent Progress of New Model

Tsunami flow velocities

- Measured
- New model (Ave.)

Time series data of flow velocity at F1 area

- Post-disaster (at 3~8 sec after flood)
- Measured
- New model
- Pre-disaster

» The result of tsunami flow velocity shows high accuracy in new model.

Tsunami flow velocity was underestimated at F1 area.

» The peak value has not reach the measured value at F1 area.

Devastated buildings could not be estimated well.
Recent Progress of New Model

Distribution of devastated buildings

<table>
<thead>
<tr>
<th></th>
<th>Sendai</th>
<th>Natori</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washed-away</td>
<td>476</td>
<td>2187</td>
</tr>
<tr>
<td>Surviving</td>
<td>318</td>
<td>1252</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sendai</th>
<th>Natori</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washed-away</td>
<td>393</td>
<td>1266</td>
</tr>
<tr>
<td>Surviving</td>
<td>401</td>
<td>2173</td>
</tr>
</tbody>
</table>

Need to model the tsunami front boundary conditions considering the drifting debris in built-up area.
Summary

Verification of Tsunami Inundation Modeling

» The model accuracy with regard to tsunami front and flow velocities increased when the roughness coefficient was determined by responding to actual land use.
» The tsunami inundation velocities could not be reproduced well at some inland areas.

We need to develop new composite equivalent roughness coefficient model reflecting the devastated buildings.

Development of New Roughness Coefficient Model

» By combining tsunami fragility functions and reference values for structural destruction, we developed the time-dependent building destruction model.
» The number of devastated buildings could not be reproduced well in Natori city (built-up area).

Need to model the tsunami front boundary conditions considering the drifting debris in built-up area.