

A Brazilian Effort Towards Ocean Model Forecast in the South Atlantic – The Oceanographic Modeling and Observation Research Network (REMO): An emphasis to remotely sensed products

Prof. Gutemberg B. França

Federal University of Rio de Janeiro (UFRJ)

BRASIL

UN-SPIDER in Riyadh – Saudi Arabia:

Oil spill detection system via remotely sensed data

Our concerning now is to know where *more precisely* the oil goes.

UN-SPIDER Bonn Workshop, Bonn 12-14 Oct, 2010

OUTLINE

- Motivation
- Introduction
- Remotely sensed products (SST and SSH)
- Modeling approach
- Results
- Remarks and following work

OUTLINE

Motivation

- Introduction
- Remotely sensed products (SST and SSH)
- Modeling approach
- Results
- Remarks and following work

MOTIVATION

Rio de Janeiro

800 tons of oil were spilled into Guanabara Bay from Petrobras refinery on **January**, **2000**.

Campos Basin

- Petrobras P-37 Accident on March, 2001
- Oil spill of approximately ~1.2 tons occurred
- Its value was U\$ 430 millions

UN-SPIDER Bonn Workshop, Bonn 12-14 Oct, 2010

MOTIVATION

Mexico Gulf oil Spill - 2010

UN-SPIDER Bonn Workshop, Bonn 12-14 Oct, 2010

OUTLINE

Introduction

- Remotely sensed products (SST and SSH)
- Modeling approach
- Results
- Remarks and following work

Main goals of REMO are:

- 1) To develop an assimilative ocean forecast system for the Brazilian continental shelf and slope regions and
- 2) To help environmental authorities in case of oil disasters.

PETROBRAS - Research Center

Brazilian Navy – CHM/IEAPM

Federal University of Rio de Janeiro - UFRJ

University of São Paulo - USP

Federal University of Rio Grande - FURG

Federal University of Bahia - UFBA

UN-SPIDER Bonn Workshop, Bonn 12-14 Oct, 2010

The Team

Ph.D: 18 M.Sc.: 8 Bachelor: 9 Technicians/ Administrative: 7 Students: 8

≈ 50 people

The Region of interest

• METAREA V - Maritime area under Brazilian Navy responsability for weather and ocean forecast

The Region of interest

• Oil and gas industry activities

UN-SPIDER Bonn Workshop, Bonn 12-14 Oct, 2010

The region of interest – The oceanographic challenges

South Atlantic Surface Circulation extracted from Petterson e Stramma (1991)

Computational Resources

High Performance Computer

NETUNO – NCE/UFRJ

Dell Server 256 nodes (2 processors Xeon Quad-core 2.6 GHz e 16 MB RAM) Total: 2048 processor units

High Performance Computer

SGI Altix ICE 8200 – CHM/Brazilian Navy

SGI Server 32 nodes (2 processors Xeon Quad-core 3 GHz e 16 MB RAM) Total: 256 processor units

REMO Ocean Modeling and Observation Network

OUTLINE

Introduction

- Remotely sensed products (SST and SSH)
- Modeling approach
- Results
- Remarks and following work

Remote Sensing Product - Ocean Model Input

UN-SPIDER Bonn Workshop, Bonn 12-14 Oct, 2010

Remote Sensing Product - Ocean Model Input

Barnes Sub-optimal interpolation technique:

FUR

SST - Validation

Table - Comparison statistics between daily SST composition and average daily *in situ* SST collected from eight buoys of PIRATA's project from August 01st,2005 to July 31st, 2006.

Buoy Location	RMSE		MAE		MBE		CORRELATION	
	(*)	(**)	(*)	(**)	(*)	(**)	(*)	(**)
15°N−38°W	0.37	0.35	0.28	0.26	-0.16	-0.15	0.96	0.97
12°N – 38°W	0.50	0.49	0.39	0.38	-0.32	-0.29	0.92	0.95
$8^{\circ}N - 38^{\circ}W$	0.33	0.31	0.27	0.25	-0.17	-0.16	0.91	0.94
$4^{\circ}N - 38^{\circ}W$	0.28	0.26	0.22	0.20	0.05	-0.06	0.85	0.86
$0^{\circ}N-23^{\circ}W$	0.31	0.28	0.26	0.23	-0.20	-0.18	0.96	0.97
$8^{\circ}\mathrm{S}-30\mathrm{W}$	0.25	0.22	0.21	0.18	-0.13	-0.10	0.97	0.99
$14^{\circ}\text{S} - 32^{\circ}\text{W}$	0.35	0.32	0.29	0.25	-0.19	-015	0.94	0.96
$19^{\circ}\mathrm{S} - 34^{\circ}\mathrm{W}$	0.31	0.29	0.25	0.23	-0.13	-0.10	0.96	0.97
(*) without restriction of wind speed				(**) with restriction of wind speed (\geq 5 m/s)				

Remote Sensing Product - Ocean Model Input

UN-SPIDER Bonn Workshop, Bonn 12-14 Oct, 2010

This figure represents track 202 of the 276th cicle from Jason1 where raw data (blue line), filtered data (red line) and batimetry (black line).

Campo Interpolado de SSHA 7 dias - Cressman

10°N

OUTLINE

- Introduction
- Remotely sensed products (SST and SSH)
- Modeling approach
- Results
- Remarks and following work

Modeling Approach

- To develop nested models from the Atlantic large scale circulation to regional circulation
 - With Data Assimilation

Data Assimilation

- In situ data
 - Argo
 - XBT
 - CTD
 - Pirata Buoys
 - Drifters

Atlantic Large Scale Circulation Model Climatologic and Synoptic Runs

- Model: HYCOM
- Domain: Atlantic Ocean 78°S – 50°N
- Resolution: $1/4^{\circ}$ and 21 vertical layers σ_{θ}
- 40 years simulation with climatological forcings:
 - Heat, mass and momentum fluxes from COADS montlhy means
- 6.5 years simulation with synoptic data, from 2003 to 2009
 - Synoptic atmospheric fields in 6h interval from NCEP reanalysis 2
- Operational daily forecast: from 2009 until now

METAREA V domain nested in the Atlantic model

- Model: HYCOM
- Domain: METAREA V
- Resolution: 1/12° and 21 vertical layers σ_{θ}
- 10 years simulation with climatological forcings (COADS)
- 6.5 years simulation (2003 to 2009) with synoptic atmospheric forcings (NCEP)
- Operational forecast: From 2009 until now
- Cooper & Haines scheme (SSH data)

SE region model nested in the METAREA V model

- Model: HYCOM
- Resolution: 1/24° and 21 vertical layers σ_{θ}
- Cooper & Haines scheme (SSH data)
- Operational forecast: 2010
- Tidal forcings (work in progress)

SE region model nested in the METAREA V model

Work in progress

- Model: ROMS
- Resolution: 1/24°

OUTLINE

- Introduction
- Remotely sensed products (SST and SSH)
- Modeling approach
- Results
- Remarks and following work

Sea Surface Temperature (SST)

20°N

Preliminar comparison: Pirata Buoy data and model results without data assimilation

TIME : 29-0CT-2009 00:00

Data Assimilation

Simulation 1st july to 31st october 2009

SSHA data assimilation from Jason-1 and Jason-2 with Optimal Interpolation and Cooper and Haines

TIME : 29-0CT-2009 00:00

(Tanajura, Ramos da Silva, Ruggiero, Daher, Belyaev, Martins, Lima, CBO 2010)

Rodada do día 02/03/2010

Model results X remote sensing SST - METAREA V Model

02-MAR-2010 00:00 TSM GOES - Composição de 24 hs

Model results X remote sensing SST - METAREA V Model

Forecast day: 24/07/2010

24-JUL-2010 00:00 HYCOM 1/12

24-JUL-2010 00:00 SST GOES - 24 hs composition

Model results X remote sensing SST - METAREA V Model

HYCOM 1/12 27.8 20.5°S 27.4 27 26.6 26.2 21.5°S -25.8 25.4 25 24.6 22.5°S 24.Z Latitude 23.8 23.4 23 23.5°S 22.6 22.2 21.8 21.4 24.5°S 21 20.6 20.2 19.8 19.4 25.5°S -19 46.0°W 42.0°W 44.0°W 40.0°W 38.0°W Longitude SST

Forecast day: 24/07/2010

25-JUL-2010 00:00

25-JUL-2010 00:00 SST GOES - 24 hs composition

Forecast day: 24/07/2010

Model results X remote sensing SST - METAREA V Model

26-JUL-2010 00:00 HYCOM 1/12 27.8 20.5°S 27.4 27 26.6 26.2 21.5°S -25.8 25.4 25 24.6 22.5°S 24.Z Latitude 23.8 23.4 23 23.5°S 22.6 22.2 21.8 21.4 24.5°S 21 20.6 20.2 19.8 19.4 25.5°S -19 46.0°W 42.0°W 44.0°W 40.0°W 38.0°W Longitude SST

26-JUL-2010 00:00 SST GOES - 24 hs composition

Model results X remote sensing SST - SE region Model

SST

Model results X remote sensing SST - SE region Model

SST

Model results X remote sensing SST - SE region Model

SST

Model results X current data

OUTLINE

- Introduction
- Modeling Approach
- Results
- Remarks and following work

Concluding Remarks

• Operational ocean forecast system running at Brazilian Navy Hydrographic Center (CHM) with Cooper & Haines scheme

Following work

- Modeling with ROMS in progress
- New regional modeling at the NE and N areas

Following work

Data Assimilation

- Ensemble Kalman Filters (EnKF)
- Local Transformed Ensemble Kalman Filter (LETKF)
- Optimal Interpolation (OI)
- 4D-VAR

Following work

- Deeper research on the model results
- Better understanding of the model skills

Concluding Remarks and Following Work

REMO homepage: www.rederemo.org

