

UN SPIDER Expert Meeting on Crowdsource Mapping for Disaster Management and Emergency Response

The Use of satellite-derived Soil Moisture for agricultural Drought Monitoring

Markus Enenkel me@ipf.tuwien.ac.at

Department of Geodesy and Geoinformation (GEO)
Vienna University of Technology

- Introduction
- Remote Sensing
- Objectives/Method
- Validation via Mobile-phone Application
- Future steps

- Introduction
- Remote Sensing
- Objectives/Method
- Validation via Mobile-phone Application
- Steps steps

Background

- Department of Geodesy and Geoinformation
 - → geometric and physical modelling
- Research Focus
- → Radar Remote Sensing of Soil Moisture, Laserscans
- Personal Background in Natural Resource Management (Water and Risk Management)
- → GLobal WAter Scarcity Information Service (GLOWASIS)

The Issue with Droughts

- No commonly accepted definition (comparison?)
- More than 50% of global land surface potentially threatened
- Natural disaster with most severe impact (hot spots)
- Higher impact in developing countries (lack of preparedness, individual strategies, lack of trust in "new" technologies)
- High potential for satellite-derived datasets

The Role of Soil Moisture

- Measure of actually available water in pore space
- Higher frequency of (hydro-) meteorological extreme events
- In-situ measurements vs. models vs. remote sensing
- Improve hydrological models
- Temporally stable spatial patterns 5

- Introduction
- Remote Sensing
- Objectives/Method
- Validation via Mobile-phone Application
- Next steps

Microwave Remote Sensing (active/passive)

Advantages:

All-weather, day-round measurement capability,

No auxiary data needed (only backscatter), NRT products

Disadvantages:

Retrieval issues over frozen soils, dense vegetation and complex

topography

Backscatter measurements

Change Detection (physically based)

EUMETSAT ASCAT orbit data example for Surface Soil Moisture

Products – all freely available (25 kilometer resolution)

- Surface Soil Moisture (SSM, orbit-format, global, NRT, EUMETSAT)
- Surface Soil Moisture (time-series, global, GEO)
- Soil Water Index (SWI, global, four layers, ECMWF)
- ESA Climate Change Initiative (SSM, 1978-2010)
- International Soil Moisture Network

- Introduction
- Remote Sensing
- Objectives/Method
- Validation via Mobile-phone Application
- Steps steps

Objectives

- Improve a drought index that is already used in East Africa
- Replace point measurements by remote sensing data
- Process the new index for the entire African continent at a temporal resolution of 10 days
- Add a soil moisture component (both surface and profile soil moisture)
- Relate seasonal forecasts to actual conditions

Source: ESA

Method - Generations

Results – ROI 1

Results - ROI 1

Results – ROI2

- Introduction
- Remote Sensing
- Objectives/Method
- Validation via Mobile-phone Application
- Next steps

The Mobile Phone App

- Response based on level of food insecurity (IPC)
- Local assessments often too slow
- Local knowledge subjective, but important
- Humanitarian aid organizations and decision-makers already on site

Main purposes:

- 1) Validation of the index
- 2) Integration of socio-economic vulnerabilities in NRT

- Introduction
- Remote Sensing
- Objectives/Method
- Validation via Mobile-phone Application
- Next steps

Next Steps

- Use the index to "track" forecasts
- Consider evapotranspiration
- Identify which parameter describes the drought condition best
- Test the mobile phone application in the field

ERS-1/2

SAR

Links

- Department of Geodesy and Geoinformation: http://www.ipf.tuwien.ac.at/radar/
- Soil Moisture Data Viewer: http://www.ipf.tuwien.ac.at/radar/dv/ipfdv/index.php?dataviewer=ascat
- ESA Climate Change Initiative Soil Moisture Climatology from 1978-2010: http://www.esa-soilmoisture-cci.org/
- International Soil Moisture Network: http://www.ipf.tuwien.ac.at/insitu/
- FAO SWALIM: http://www.faoswalim.org/

