Strengthen Scientific Advisory Capacities for Disaster Risk Reduction

Rajib Shaw
Executive Director, IRDR
Co-Chair, ASTAAG
SCIENTIFIC ADVICES ON REDUCING DISASTER RISKS

Follow Us On

http://www.irdrinternational.org

www.irdrinternational.org
SFDRR and Post Sendai

- March 2015: SFDRR
- May 2015: ASTAAG
- January 2016: Global Sc-Tech Conference and Global Road Map
- August 2016: Regional Sc-Tech Conference and Regional Outcome Document (ASTCDRR)
- November 2016: Asia Ministerial Meeting on DRR (AMCDRR)
- May 2017: Global Platform on DRR
- 2017: Global Sc-Tech Conference
- 2018: ASTCDRR
- 2018: AMCDRR

www.irdrinternational.org
Science and Technology Needs

• Strengthening science technology academic community: *Making research more meaningful*
 – Focus both on higher education, research, disciplinary issues in academics

• Support governments in science based decision making
 – Regional / national mapping of science and technology status
 – Monitor the progress at national level
 – Active participation in national platform

• Enhance networking among academic community and other stakeholders (civil society, private sector, media etc.)
 – Network analysis and mapping
 – Innovations
CASE STUDIES
Science and Technology for Disaster Risk Reduction

25. Case Study: Cross Boundary Flood Risk Management
26. Case Study: Digital Radio
27. Case Study: Disaster Resilient House and Schools
28. Case Study: Ecosystem
1. PROFILE / CONTEXT*

Japan is vulnerable to different types of natural hazards due to its coastal location in the Pacific Rim of Fire. Science and Technology has contributed significantly in reducing the risk to natural disasters. Science Council of Japan is the premier science body, which provides advice to the national government in terms of disasters. Japan also has a yearly Grant-in-Aid program for conducting research in the university and research institutions, apart from special program after major disasters. A few previous disasters have changed the course of disaster research in Japan: 1923 Kanto Earthquake, 1960 tsunami, 1995 Great Hanshin Awaji Earthquake, and 2011 Great East Japan Earthquake and tsunami. Several of these disasters have urged new direction of implication of science into decision making, early warning systems and science policy dialogue.

2. STATUS

<table>
<thead>
<tr>
<th>Attributes of Science and Technology to Disaster Risk Reduction (DRR)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science and Technology in decision making</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Presence of Science and Technology advisory group to DRR model ministry and related ministries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 Presence of Science and Technology group in DRR national platform</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 Existence of inter-ministerial discussion platform on science related issues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4 Implementation of risk, needs and damage assessment with involvement of Science and Technology group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 Existence of early warning system and mechanism with Science and Technology knowledge and tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6 Availability of disaster data statistics on damage and impacts and its data collection mechanism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7 Involvement of Science and Technology group in infrastructure design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8 Scientific revision/updating of regulations, policies and guidelines for DRR strategies, disaster response and preparedness plan etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Investment in Science and Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Existence of grant support by the national government to researchers in disaster related topics that focus on Science and Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 Establishment of disaster related courses in higher education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 Presence of national research institutes and organizations for disaster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4 Investment/support by the national government in national/international conferences and events on disasters for knowledge sharing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5 Support to collaboration with academia and the private sector for developing innovative technical solutions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6 Support to collaboration with academia and civil society for developing innovative social solutions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Link of Science and Technology to people</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Availability of a hazard map to people, developed based on scientific knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 Scientific validation of indigenous knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 Involvement of Science and Technology group in developing program for evacuation drills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4 Availability and participation of Science and Technology group in community discussion as facilitator or advisor/mentor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5 Dissemination of science based early warning and forecast to people</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6 Involvement of Science and Technology group in developing disaster related education curricula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7 Involvement in disaster studies such as museum and events such as expositions to disseminate disaster knowledge and deeper understanding on disasters among citizens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*This report is prepared by Rijki Shaw and Takako Iwata, ASTACO members from Japan based on their knowledge, interpretation and interviews with Professor Takashi Onishi, President, Japan Science Council, Professor Kazuo Takara, Director, DRR, Kyoto University and Professor Fumio Inoue, Director, WECSS, Tokyo University.

3. SCIENCE AND TECHNOLOGY IN DECISION MAKING

Japan, scientists are included as members of the Central Disaster Mitigation Council on DRR, which is the key policy support body to the national government. Their inputs are often applied for policy and decision making processes, however, not always. It is a major progress in Japan that such a mechanism and system exists to reflect the opinions and voices of scientists into practical decision making. Not only are included as members of the Council, but also there is a direct route to reach the Prime Minister if it is urgent and most important. On the other hand, more practitioners need to be included as the members to implement the policies and regulations.

In addition, under the Central Disaster Mitigation Council on DRR, it is possible to convene the Expert Examination Committee in various disaster areas when further detailed research is needed for a specific topic. Various assessments are conducted by the Committee.

At the local level, the provincial city governments request national/local/ private universities professors and researchers to serve in the decision support committees to develop hazard maps, early warning system, disaster resilient planning etc.

The area, which needs improvement of science linkage to decision making, is the modeling of unprecedented event (low/high probability, high consequence events), especially focusing on fixed and volcanic disasters.

In case of damage estimation, scientific decision tools are used for making government assets, however, it is also important to use the same methods for assessing private sector damages, and link it to the decision making process. Depending on municipality, the methodology and criteria of data collection is different.

4. INVESTMENT IN SCIENCE AND TECHNOLOGY

The Japanese Government has provided the generous support to science and technology researches such as Grants-in-aid for Scientific Research. While the amount is not fully satisfactory, such grants are very helpful and meaningful to strengthen research capacity in Japan and not many countries have such a system. There is a concern on a volcanic observatory capacity. The countermeasure and DRR for volcanic eruption is not sufficient.

It is necessary to establish a foundation that collects the fund from individuals and private organizations. In this way, the funds can be used for longer-term purposes. The support from the national level is rather for the short-term and it is a common procedure for the amount to be reduced after 3 years of the event.

Science – private sector relationship has been strong in the insurance sectors, where science based modeling helps in forming insurance schemes. However, additional investment is required for developing innovative risk reduction products along with private sectors.

Investment in local government for science based risk reduction is still an area, which needs improvements. For example, out of close to 3,000 municipalities in Japan, close to 1,000 local governments have science based flood hazard maps, and the rest needs to be developed in due course.

Science-civil society collaboration is another area, where increasing research grants are provided. These are mostly project-based involvement, which needs to be continued over a longer period of time.
5. LINK OF SCIENCE AND TECHNOLOGY TO PEOPLE

The Japanese DRR measure focuses on major cities not local areas. How to strengthen DRR capacity for areas, for instance, where the population of elderly people is high is one of future challenges.

Detailed DRR strategy and countermeasure are not yet applied or developed. For instance, anti-seismic structure against earthquake is popular; however, any DRR technology and measure to reduce landslide risks have not been developed yet.

Regarding at the disaster response stage, comfortableness at evacuation centers is not fully considered at the preparedness stage. It may lead to causing less-aggressiveness of evacuation actions by citizens.

More research is required at the local level, especially focusing on social science and behavioral science, to investigate how the science base early warning system leads to people in safety place, well ahead of time. It is necessary for indigenous knowledge to be validated, however, due to the limitation of number of experts, it has not been done widely.

Disaster related subjects are currently included in the classes of history and geography under the current school curriculum. Science education linkage needs to address the interface of the science base system and the people's reception. Thus, it is important to link technical and human society together. For instance, one of the challenges is how to deliver science to elderly people in a user-friendly manner. In addition, it is necessary to address the issue as a social and welfare matter not only as a disaster related issue.

The traditional role of university and academia was to develop advanced technology, however, it is widely acknowledged that to address DRR issues as social problems is necessary and to develop solutions with social approach is indispensable. To reform the way of thinking of academics and universities regarding their roles is necessary.

6. LESSONS / ISSUES FROM PAST MAJOR DISASTERS

Changes in building codes, major guidelines: The most important part of lessons from past disasters includes detailed scientific invest in the failure of structure and system. For example, after the 1995 Great Hanshin Awaji Earthquake, the codes for RC buildings, steel structure, highways were revised, through the analysis of structural damages of buildings and infrastructures. Moreover, the architectural codes were improved by investigating the functional dimensions of the earthquake evacuation place after the disaster. The same process was observed after the 2011 Great East Japan Earthquake and Tsunami, where the evacuation drill guidelines were revised and updated.

From building safety to human safety: One of the key lessons from past disasters is to decide on how to save human, rather than how to save building. This has been core to engineering discipline.

Multi-disciplinary research: A major change is multi-disciplinary research has been observed after the 1995 Great Hanshin Awaji Earthquake, which has prompted the incorporation of social and cultural studies of people and communities to be linked to engineering and science based research to make it effective for disaster mitigation.

System resilience approach: A system based approach has been promoted after the few recent disasters, which need to investigate the most weak or vulnerable part of a system (as against a structure in the earlier practices), and proper corrective measures to overcome the problem. In urban areas, major problems and weaknesses also need to be addressed in order to strengthen resilience. This is not fully understood. It may be understood at municipalities, however, not by citizens and private sectors. It is not possible for them to understand risks and how to avoid them.

Understanding limitation of science: It is important to know the limitation of science in uncertain and complex disasters. Thus, the key lesson is to know the limitation, share it with people and link it to their actions.

7. SFDRR PRIORITY AREAS

<table>
<thead>
<tr>
<th>SFDRR Priorities</th>
<th>Relative level of involvement of Science and Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Understanding disaster risk</td>
</tr>
<tr>
<td>2</td>
<td>Strengthening disaster risk governance</td>
</tr>
<tr>
<td>3</td>
<td>Investing in disaster risk reduction</td>
</tr>
<tr>
<td>4</td>
<td>Enhancing disaster preparedness</td>
</tr>
</tbody>
</table>

8. SHORT AND LONG-TERM GOALS (3 SPECIFIC ACTIONS FOR BOTH SHORT AND LONG-TERM GOALS)

1. Network of different academic associations to form Japan Academic Network for Disaster Reduction, under the auspices of Japan Science Council for an initiative, which started after the 2011 East Japan Earthquake and Tsunami.
2. More precise prediction and decision making of volcanic and earthquake risk reduction.
3. Linking customization and implementation of scientific research, based on the details needs assessment analysis.

9. HIGHER EDUCATION STATUS

The Japanese education system is clearly divided into two categories—social sciences/arts and natural science/engineering. In Japan, departments in universities are developed based on the need for job opportunities. If there is a need and request from local governments, then disaster risk reduction managers or disaster management experts, the courses/department for disaster management can be developed. However, the area of disaster management is currently covered by generalists; therefore, there is only minimum possibility to establish a disaster management course in universities. Nonetheless, how to strengthen expertise and specialization of generalists in disaster management is a challenge. How to utilize existing workforce is a major concern.

Some of the major universities are currently considering professional training program (Master course in disaster management), through a university network approach, which will target mostly professionals in Japan and abroad.

More focus on higher studies on volcanology is required.

Higher education should be accessible to common people, who are interested in the subject.
Science Technology in DRR

• Regional Level:
 – Regional periodic Sc.-Tech conference
 – Recommendations into Ministerial Conference
 – Periodic regional mapping
 – Collaboration with other programs like Future Earth

• National Level:
 – Strengthening national capacities
 – Pro-active participation in national platforms
 – National Science Technology Plan

• Local Level:
 – Recognize Local Center of Excellence
 – Link local resource institute to local governments
 – Local multi stakeholder DRR platforms
6TH SESSION OF AFRICA REGIONAL PLATFORM AND
5TH HIGH-LEVEL MEETING ON DISASTER RISK
REDUCTION
22-25 NOVEMBER 2016 | MAURITIUS

ABOUT THE CONFERENCE
Representatives of African countries, stakeholder groups, and development and humanitarian partners will gather in Mauritius, 22-25 November 2016, for the 6th Session of the Africa Regional Platform, and the 5th High Level Meeting on Disaster Risk Reduction. The Platform and High Level Meeting will be hosted by the Government of Mauritius in cooperation with the African Union Commission, the UNDRR Secretariat and the UN Office for Disaster Risk Reduction (UNISDR).

Expected outcomes of the event include the Africa Programme of Action to implement the Sendai Framework for Disaster Risk Reduction in Africa, the Mauritius Declaration on implementation of the Africa Programme of Action and a draft Agenda for the Global Platform 2017.

PRACTICAL INFORMATION
- Register now! Deadline: 31 October 2016
- Side Events: Call for proposal - [EN] [FR]
- Application format - [EN] [FR]
- Call for Proposal for Exhibition booths - [EN] [FR]
- Information Note - [EN] [FR]

KEY DOCUMENTS
- Concept Note - [EN] [FR]
- Yaounde Declaration 2015 - [EN] [FR]
- Sendai Framework for DRR 2015-2030 - [EN] [FR]
- Africa Status Report for DRR 2014 - [EN] [FR]
- Africa Regional Strategy for DRR 2020 - [EN] [FR]
- Extended Programme of Action for the implementation of the Africa Regional Strategy for DRR 2005-2015 - [EN] [FR]

www.irdrinternational.org