Ten-years progress and development in seismic remote sensing monitoring technology

Xuhui Shen, Hui Wang

Institute of Earthquake Science, China Earthquake Administration

2013-10-25

Outline

- Main requirements of satellite technique for earthquake monitoring
 - 2. Framework of application system for seismic satellite monitoring
 - 3. Main developments of seismic satellite monitoring

Earth observation from spatial technology provide new opportunities for improving of the ability of earthquake prevent and disaster reduction

>Large-scale >highly dynamic >multi-parameters > all-weather

Seeing the Earth with new eyes

	Earthquake defense system Monitoring and forcasting system			Emergency rescue system		
workflow	Ultro-long- term and long Mo term t Strain accumulation line	Short term edium and long erm;long term	impending in recovery line	Emergency after earthquakes		
Visible light	Seismic structure survey			Disaster monitoring, damage		
Infrared	Blind structure survey	Brightness temperature, r flux, infrared imag	adiation ge	assessment, recovery and reconstruction		
Radar	Blind structure survey	Deformation monitoring	(work monitoring, emergency preparedness		
Hyperspectrum	Geochemical gas monitoring					
Electromagneti	sm Deep structural inversion	Low frequency ionospheric pert	EM and turbation			
Electromagneti Acoustic gravity wave	m Deep structural inversion	Low frequency ionospheric pert Infrasound a disturba	EM and curbation and AGW nce			
Electromagneti Acoustic gravity wave Gravity field	m Deep structural inversion Deep structural inversion	Low frequency ionospheric pert Infrasound a disturba Microgravity disturbance	EM and curbation and AGW nce			
Electromagneti Acoustic gravity wave Gravity field Navigation	m Deep structural inversion Deep structural inversion Deformation monitorin and navigation	Low frequency ionospheric pert Infrasound a disturba Microgravity disturbance Deformation observati inversion, navigation and	EM and curbation and AGW nce on, TEC positioning	Navigation and positioning		
Electromagneti Acoustic gravity wave Gravity field Navigation	m Deep structural inversion Deep structural inversion Deformation monitorin and navigation	Low frequency ionospheric pert Infrasound a disturba Microgravity disturbance Deformation observati inversion, navigation and	EM and curbation and AGW nce on, TEC positioning	Navigation and positioning		

Outline

- 1. Main requirements of satellite technique for earthquake monitoring
- 2. Framework of application system for seismic satellite monitoring
 - 3. Main developments of seismic satellite monitoring

Space segment of the three-dimensional seismic monitoring

- Long-term and mid-term seismic precursors monitoring system: GPS-BD, D-InSAR, gravity, etc.
- Mid-term and short-term seismic precursors monitoring system: Infrared, hyperspectral, etc.
- Short-term and impending seismic precursors monitoring system: Seismo-lonosphere, etc.
- Emergency response and dynamic monitoring system: optical, radar, etc.
- Independent support system: communication satellite, navigation, etc.

Key Projects

- Geophysical remote sensing satellite: Electromagnetic Satellite, gravity satellite
- High-resolution optical and radar satellite in geostationary orbit
- Reformation of crustal movement observation network platform: GPS - BD
- Integrated satellite application system for earthquake: RS+BD+ communication Satellite
- Key theories and technologies for seismic satellite monitoring and applications

Infrastructure of applications system for earthquake prevent and disaster reduction

Technical flow of long-term and mid-term earthquake prediction

Technical flow of short-term and impending earthquake prediction

Outline

- 1. Main requirements of satellite technique for earthquake monitoring
- 2. Framework of application system for seismic satellite monitoring

➡ 3. Main developments of seismic satellite monitoring

Electron density(Ne) before M8.0 Wenchuan earthquake ^{布图} 3日 Ne分 布图 5日 Ne分 布图 6日 Ne分 布图

In-situ Ionic H+ and O+ content recorded by DEMETER satellite

Main features of ionospheric anomalies related with earthquake

> main physics parameters

Electromagnetic fields: VLF, ELF, ULF, etc;

Plasma: TEC; $f_0F_{2;}$ Electron / ion concentration and temperature; Ionic components, etc;

Energetic particles: particle flux .

≻time

Plasma Disturbances 1-5 days before earthquake, duration 4 to 6 hours;

Electromagnetic field and energetic particle Disturbances : 1-5 hours before earthquake;

Disturbances often come in the afternoon.

► Spatial scale

about 10° around, epicenter a certain shift relative to the epicenter, magnetic conjugate zone may also occur

➢intensity

magnetic: nT; Electronic field: uV/m; Energetic particles and Plasma: more than 20-30%.

Technique flow of Infrared radiation anomaly processing

Infrared radiation anomaly related with the M8.0 Wenchuan earthquake

Brightness Temperature

≻2008

The obvious Brightness Temperature anomalies(May 7 and 8) may be have relationship with this event.

▶ 2007

The anomalies(May10, 21and 29) may be have relationship with wenchuan earthquake. Another possibility is M6.4 Ninger earthquake occurred on Jun 6, 2007.

≻2006

No obvious anomalies.

the TBB anomaly evolution before Wenchuan Ms 8.0 earthquake on May 12,2008

• epicenter

Infrared radiation anomaly related with the M8.0 Wenchuan earthquake

Outgoing Longwave Radiation

✓ the obvious OLR anomaly appeared 13 days (April, 29, 2008) before this event in the epicenter.

✓ This kind of anomaly appeared frequently in the epicenter region until the day before this earthquake (May 11, 2008), and the scale decreased gradually. Then the anomalies disappeared completely after the earthquake.

 \checkmark The anomaly covers an area approximately of 20 000 square kilometers and was distributed along the Longmenshan fault zone. which is the seismogenic structure of this earthquake.

the OLR anomaly evolution before Wenchuan Ms 8.0 earthquake on May 12, 2008 (Epicenter is marked with red star, active faults with red lines)

Infrared radiation anomaly related with the M8.0 Wenchuan earthquake

≻Obvious **SLHF** anomalies before this earthquake over the epicenter area. ≽the scale of anomalies decreased gradually and disappeared completely after the earthquake.

the SLHF anomaly evolution before Wenchuan Ms 8.0 earthquake on May 12, 2008

Infrared radiation anomaly related with the M8.0 Wenchuan earthquake

NCEP Air Temperature

NCEP •The air temperature anomalies of this event start from 5 May and the highest anomalies appear on 6 May.

NCEP •The air temperature anomalies disappeared completely after 7 May.

the NCEP anomaly evolution before Wenchuan Ms 8.0 earthquake on May 12, 2008

Synchronism Features of Infrared Multi-parameter

No	TYPE	Case study		characteristics			reflect	
		total	abnormal	no abnormal	time	space	magnitude	capacity
The anomalies appeared about two weeks prior to earthquakes.						isolated	1-3 (STD threshold)	>M6.0 for better
2	TBB	23 The loo	15 cation of s	8 eismic and	several days to malies were us	Near the fault sually	>3(threshold)	Most of the earthquakes
3	SLHF T	95 ^T he infr	isolated a	and near th 22 (23%) alies are p	ne epicenter. 2 weeks ossible to be d	Moving toward to the opicenter etected	About 90W/m ² (difference from background)	>M6.0 for better
4	NC EP	in se	weral earth magnitu	iquakes, de (Ms>6	especially grea (0.0) events.	in the inghest region	5-11.2° (difference from background)	Most of the earthquakes

Successful case

Mid-term prediction

Crustal deformation measurement by InSAR

3D deformation field produced by the Yutian earthquake

 $\begin{pmatrix} d_U \\ d_E \end{pmatrix} = \begin{pmatrix} 0.554895 & 0.516508 \\ -1.415460 & 1.430564 \end{pmatrix} \begin{pmatrix} d_1 + d_n \cdot 0.071996 \\ d_2 + d_n \cdot 0.077346 \end{pmatrix}$

(4-6)

Infrared multi-parameter and earthquakes

