Application of Geospatial Technologies in Developing Climate Change Adaptation Tracking Mechanism (ATM) in Bangladesh

Sheikh Tawhidul Islam, PhD (Durham, UK)

Professor Department of Geography and Environment Director Institute of Remote Sensing Jahangirnagar University, Bangladesh.

and

Krishna Prosad Mondal

BANGLADESH HAZARD PROFILE

Affects 2.3 m ha crop land. Loss of grazing fields, dried up ponds, water shortage. In 2006, reduced food grains by 1 million tons.

FLASH FLOOD

Damages standing crops, infrastructures and facilities. Unpredictable, uncertain.

FLOOD

Inundates 20% (normal years) to 75% of land area during monsoon, increases river erosion, breaches embankments, damages infrastructures. Loss of crops, fisheries, livestock, biodiversity.

SALINITY INTRUSION

Damages biodiversity, crop lands, livelihoods, safe water sources. Spreading intrusion from 0.75 to 1.5 m ha (2009); 53% of coastal area affected. Projected displacement: 6-8 million people by 2050

CYCLONE

Remains the deadliest, most destructive hazard. Recurring events, lingering aftermath, complex recovery.

Improved preparedness (CPP, shelters, embankments).

AND

CLIMATE CHANGE HAZARDS, EARTHQUAKES, FIRE BREAKOUTS, INFRASTRUCTURE COLLAPSES, ETC.

Comprehensive Disaster Management Programme (CDMP II) Ministry of Disaster Management & Relief

table inter

101001010

Photed

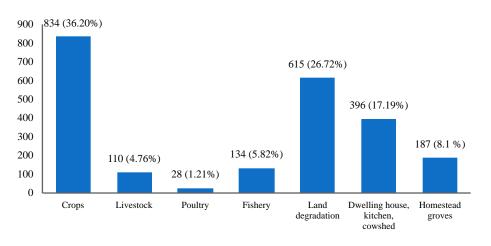


Figure: Loss and damage caused by disasters (2009-2015) in different sectors (figures in million USD). Source: BBS 2015.

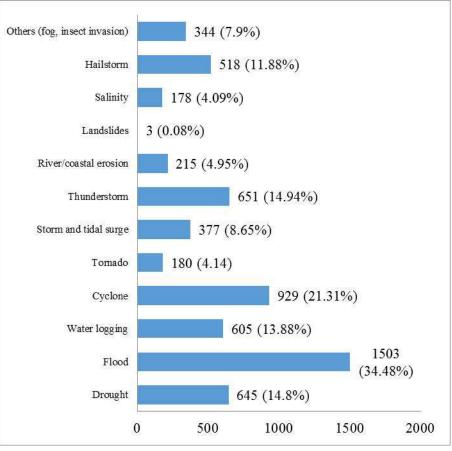


Figure 9: Number of affected people from various types of disasters drawn from the sample population (BBS 2015).

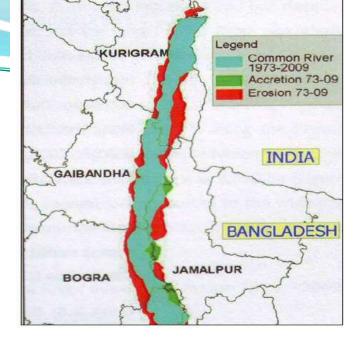


Figure: Physical context of Chouhali study site, Sirajgonj district.

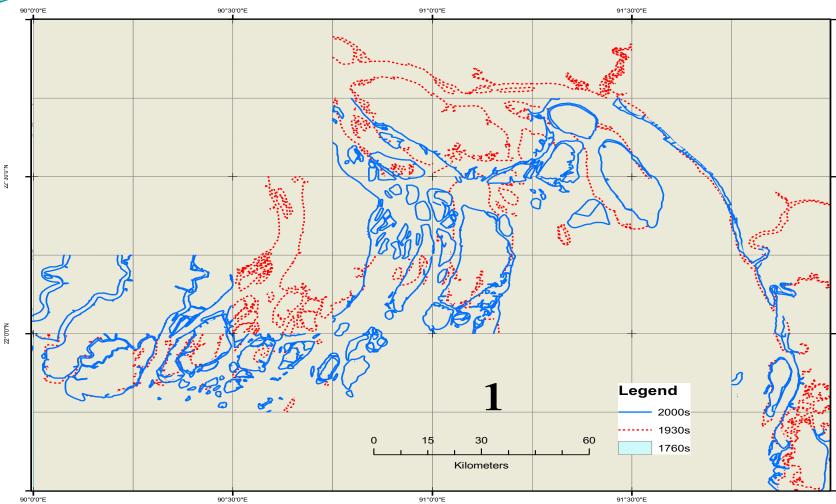
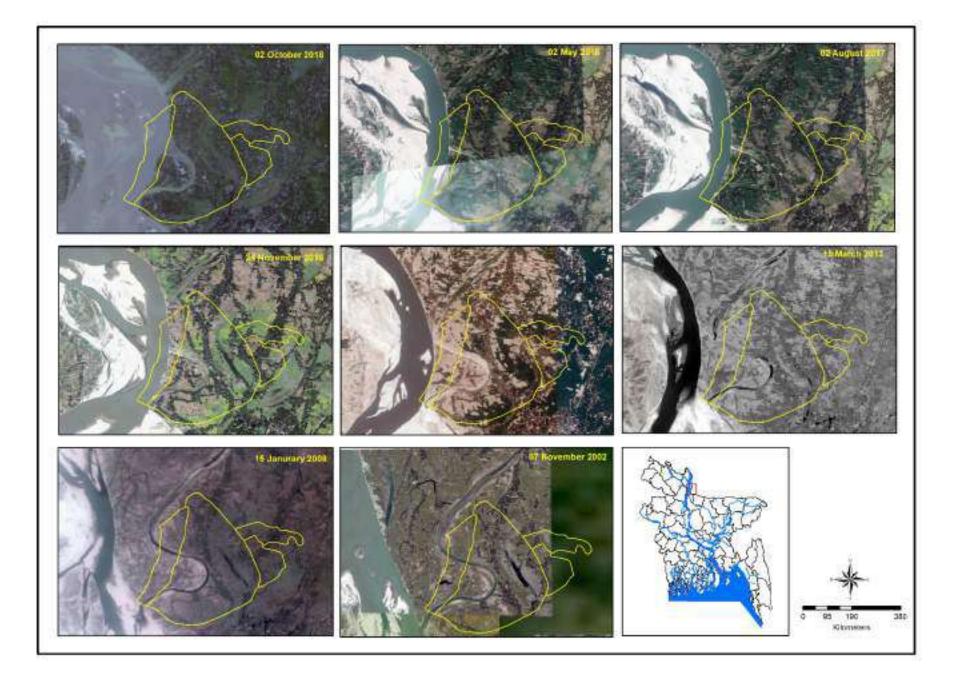
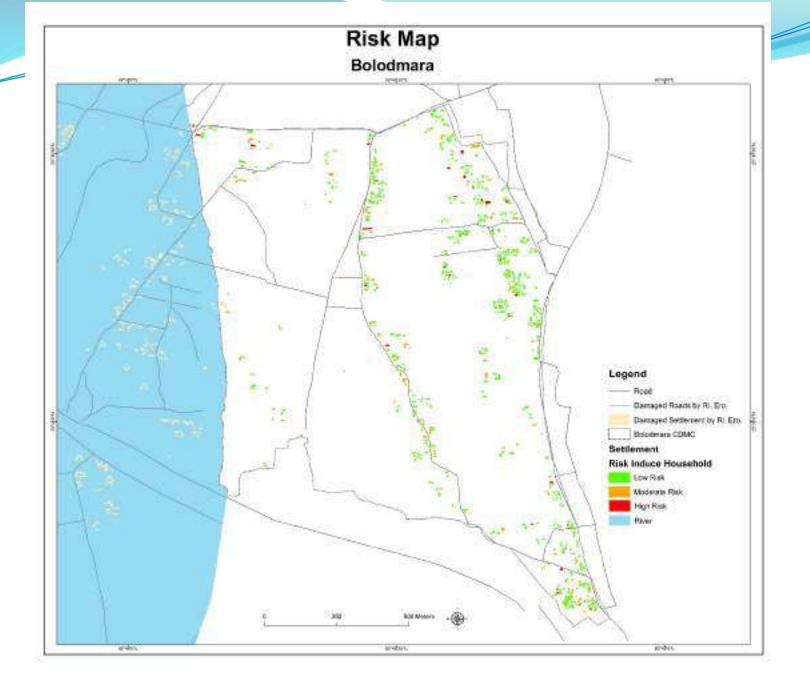
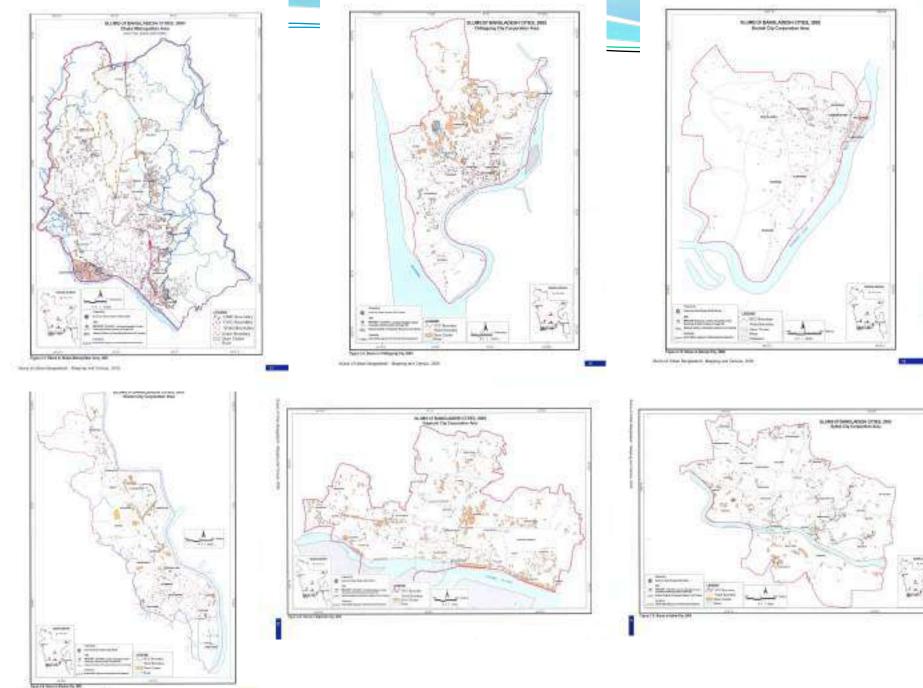





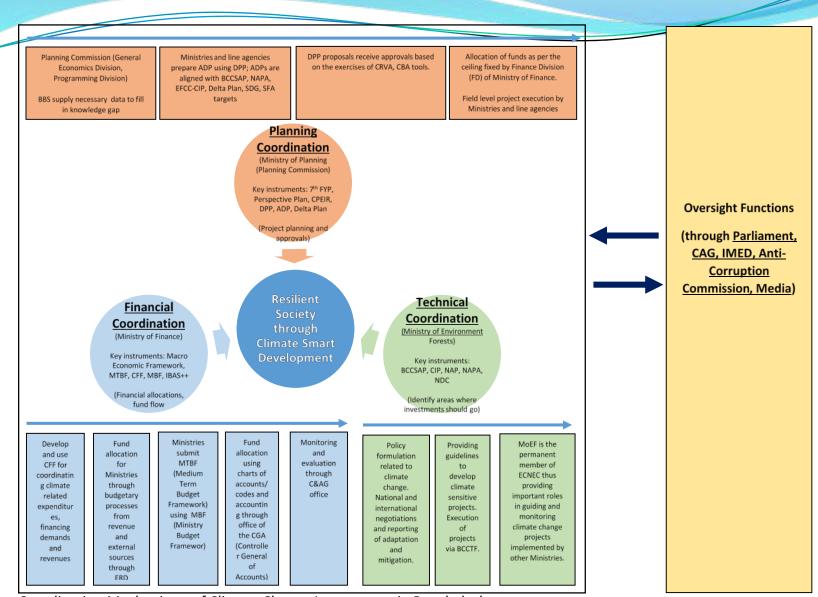
Figure 9: Block wise accretion-erosion and changes in the GBM estuary during the last 240 years. Source: Rashid et al. 2008.

Data Relating to Loss and Damage happened due to Disaster Impacts

2005-2015, Te	otal damage in '000 l	USD, EM-DAT
2007	Flood	14000
2007	Flood	100000
2007	Storm	2300000
2009	Storm	270000
2013	Storm	20000
2014	Flood	160000
2015	Storm	4000
2015	Storm	40000
2015	Flood	40000
		2948 million USD
		Total

Damage and loss caused by disasters (2009-2015), BBS 2015.		
Disasters	Million BDT	Million USD
Drought	10569	132
Flood	42807	535
Water logging	16062	200
Cyclone	28384	355
Tornado	4299	54
Storm/Tidal surge	12676	158
Thunderstorm	10940	136
River/Coastal erosion	36408	455
Landslides	249	3
Salinity	6072	76
Hailstorm	11471	143
Others	4306	54
Value of total loss and		
damage	184247	2301

Policies


- NPDM (National Plan for Disaster Management)
- Disaster Management Act
- Standing Orders on Disasters
- National Adaptation Programme of Action
- BCCSAP (Bangladesh Climate Change Strategy and Action Plan)
- CIP (Climate Investment Plan)
- 7th Five Year Plan
- SDG attainment plan (BESF)

Loss and damage information collected by the D Form of DDM

Information	Description	Information	Description
category		category	
1	Name of Upazilla and district affected disasters	15	Damage of mobile phone towers
2	Number of wards/unions affected	16	Damage of structures of religious institutions
3	Affected area in square kilometres	17	Information on the damage of road networks of different categories
4	Affected people (man, women, children)	18	Number of bridge and culvert damage
5	Physically challenged persons (man, women, children)	19	Damage of embankments in kilometres
6	Affected households (partial, total)	20	Affected forest areas in hectares
7	Number of affected house (concrete, semi- concrete, thatch made)	21	Number of affected educational institutions
8	Affected disaster shelters (partial, total)	22	Affected industries (agriculture and non- agriculture)
9	Value of livestock lost (goats, lamb)	23	Number of affected tubewells
10	Value of livestock lost (cow, buffalo)	24	Affected toilets/latrines
11	Value of birds/poultry lost (chicken, duck)	25	Affected water reservoirs in numbers
12	Affected crops and seedbeds in hectares	26	Affected health centers (hospitals, clinic, community health centers)
13	Damage of other farms (e.g. shrimp hatchery etc.)	27	Loss of fishing boats and gears (boats, trawlers, fishing nets)
14	Damage of power lines (partial, total)		

Provided assistance to MoDMR in using high spatial resolution drone image in disaster impacts recovery prcess in Banshkhali (Chittagong).

Coordination Mechanisms of Climate Change Investments in Bangladesh. 0: Coordination Mechanisms of Climate Change Investments)

ATM Architecture

Category	Primary key in the user interface software	Variables	Statistical treatment	Category of divisions
1. Vulnerability	Meteorological data	Temperature Rainfall	- Characteristics - Average/Pattern - Threshold (monthly, seasonal and yearly) - Anomalies - Projected scenario/prediction (statistical down scaling: GCM simulation) - Interpolation	By year By area/station By Agro-ecological zones By hazard types
	Hazard and disaster impacts	Floods (seasonal) Floods (flash type) River bank erosion Waterlogging Cyclone Drought Salinity	- Hazard maps - Change in the river bank line - Scenario prediction mapping	By year By administrative boundary By Agro-ecological zones
	Infrastructure	Roads Rails Embankments Social institutions	-	By administrative boundary
	Land use pattern including land elevation	Application of drone technologies Application of low resolution DEM (SRTM or Sentinel data of ESA)	- Reference flood level for local level planning	By year By administrative boundary By Agro-ecological zones
2. Adaptation interventions	Vulnerability and interventions	Household (HH)	 Locational information of the household, photograph and mobile phone number Database (vulnerability, sensitivity and exposure) against HH ID 	Baseline Interventions Impacts
		Community (CBO, Local Government)	 - Locational information, information about the representation and mobile phone number - Database (vulnerability, sensitivity and exposure) against HH ID 	Baseline Interventions Impacts
	Major project activities in the area	At local level	Project attributes	Pre project During project Post project scenario
3. Tracking Measuring and	Numeric reporting	Allocation of funds Vulnerability, sensitivity and exposure of the HH and local institutions	- Distributions of HH with specific financial allocations (may be range of value is used) - Allocations of funds to different social/local institutions	By adaptation intervention category By locations, hazard types
Reporting	Qualitative reporting Spatial analysis	CRA/RRAP for the union MoDMR reporting (based on D form) Case stories Production of maps based on user needs and queries		
	(converting to kml)			

ATM (Data and Methods)

- Climate Change Risks (variability and change in the climatic variables)
- Erratic rainfall; shifting precipitation pattern (Statistical assessment and reporting; using R)
- Heat spells over threshold level (Statistics using R, modelling, thermal band of RS)
- More floods, untimely floods (use of series of satellite images, DEM/drone and reporting, OSM)
- Increased river bank erosion (use of series of satellite images and reporting)

ATM (Data and Methods)

- Increased, prolonged drainage congestion (GIS/spatial analysis and RS)
- Salinity intrusion into surface water, ground water and soil (GIS, RS, Secondary data analysis)
- More cyclone, storm surges with higher intensities (RS, DEM/drone)
- Reduced water availability for households and agricultural crops (RS, GIS)
- Also information about land topography, settlements/village, physical information, institutions, commonplaces, land use, disaster prone/affected areas

Components of FDES

- 1. Environmental Conditions and Quality
- 2. Environmental Resources and Their Use
- 3. Residuals
- 4. Extreme Events and Disasters
- 5. Human settlements and Environmental Health
- 6. Environmental Protection, Management and Engagement

Table 3.1: FDES uses a multi-level approach

Component	Sub-component	
1	2	
Component I: Environmental Conditions and Quality	Sub-component I.1: Physical Conditions Sub-component I.2: Land Cover, Ecosystems and Biodiversity Sub-component I.3: Environmental Quality	
Component 2: Environmental Resources and their Use	Sub-component 2.1: Mineral Resources Sub-component 2.2: Energy Resources Sub-component 2.3: Land Sub-component 2.4: Soil Resources Sub-component 2.5: Biological Resources Sub-component 2.6: Water Resources	
Component 3: Residuals	Sub-component 3.1: Emissions to Air Sub-component 3.2: Generation and Management of Wastewater Sub-component 3.3: Generation and Management of Waste Sub-component 3.4: Release of Chemical Substances	
Component 4: Extreme Events and Disasters	Sub-component 4.1: Natural Extrem Events and Disasters Sub-component 4.2: Technological Disasters	
Component 5: Human Settlements and Environmental Health	Sub-component 5.1: Human Settlements Sub-component 5.2: Environmental Health	
Component 6: Environmental Protection, Management and Engagement	Sub-component 6.1: Environmental Protection and Resource Management Expenditure Sub-component 6.2: Environmental Governance and Regulation Sub-component 6.3: Extreme Event Preparedness and Disaster Management Sub-component 6.4: Environmental Information and Awareness	

Table 3.2: FDES Components, Sub-components with Statistics

l digit	2 digits	3 digits	4 or 5 digits
Component	Sub-component	Statistical Topic	Statistics

Objectives of BESF 2016-2030

(i) identifying main quantifiable aspects of the environment,

(ii) identifying components, sub-components and topics that are relevant and statistically feasible according to defined national needs and priorities,

(iii) facilitating the development of a national programme of environmental statistics,

(iv) contributing to the assessment of data requirements, sources, availability and gaps,

(v) guiding the development of databases that can be used for multiple purposes and

(vi) assisting the co-ordination and organization of environmental statistics given the inter-institutional nature of the domain.

Reports to be developed proposed in the BESF (2016-2030)

1.	Compendium of Environmental Statistics
2.	Compilation of Resource Accounts following SEEA (on land/soil, water, forests, natural
	gas, energy, fish)
3.	Climate Change and Natural Disaster-related Statistics
4.	Compilation of Social Accounting Matrix
5.	Poverty Environment Accounts (PEA) in light with SEEA
6.	Experimental Ecosystem Accounts (EEA) in light with SEEACF
7.	Household Survey of Health and Sanitation in Disaster Prone Areas of Bangladesh
8.	Urban/Rural Waste Generation Recycling and Management survey
9.	Environmental Protection and Resource Management Expenditure Accounts
10.	Disaster Risk Reduction Expenditure Accounts
11.	Climate Change and Natural Disaster Impacts Vulnerability Index
12.	Pre-crisis Data Gathering Tools as Baseline Information
13.	Climate and Natural Disaster Induces Survey
14.	Urban/Rural Water generation Use and Management survey
15.	Developing a Web Based Data Sharing Reporting and Ensuring Access to Stakeholders

<u>Temperature analysis of 40 years</u>

Changes in Urban Heat Islands of Bangladesh by transe of Renze Serving, JU

Data and Software Used.

Google Earth Engine

Freadland Disconcern

UCOT UC 318 Land Surface Temperatum and

Ensurinty & Day Globel Test Integery

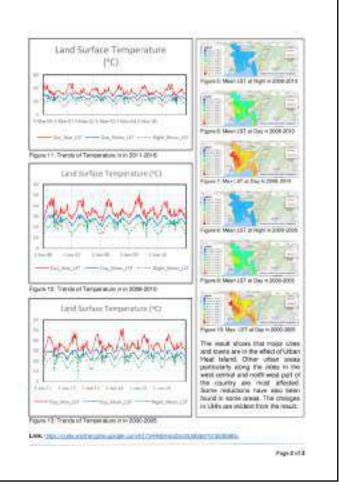
Routial Micandary of Bengledeeth

Pigara-Dr Mean UST at Might in 2011 2016

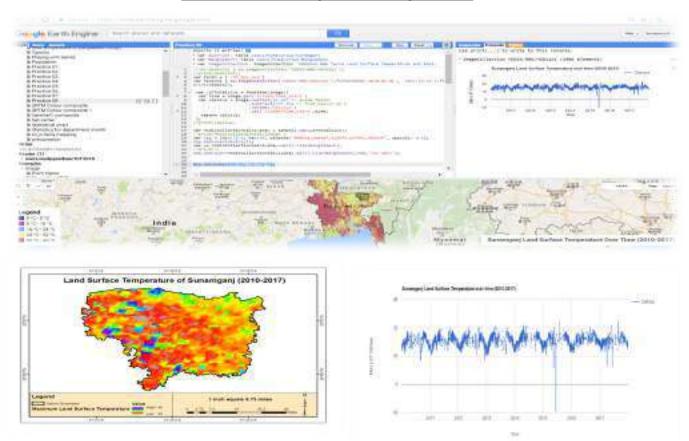
Introduction -

Earchident's in experiencing a remarkable rate of artian growth. As percent are institutingly inighting to the orbits areas for intellifected, ackeditm of as talkats of tabiral chapter, urbat areas are covered. As attain and other values areas are proving changes occurring to their landscape opport land and soperation recipiced to procretable trainings. made and other initiatizations. These sharpes count train regime is beautry namer from they sumi autournings, terring as 'alantf' of rights tomperishans in the landscape, insuen as Lifteen Heat bland J.H.R. The advance attanty of 1241. volutes deterologies of living protocology isomete il energy calibulignos, prouto fevel scorettoreatory and over an increase in montality rate UHE can provide magazive impetite to urban fore and blacks.

(c) other to cohordward the throught is URLs in Europhanets, Lood Sarchez Temperature are analysed using MCDB sequence of Article Arapa and Tarre adultation. Lord Sarchez Europeantees (UST) is in anything sequence of the land sarches, article has strung seducates are an exponential. Phys. LST to an orderate the UR.

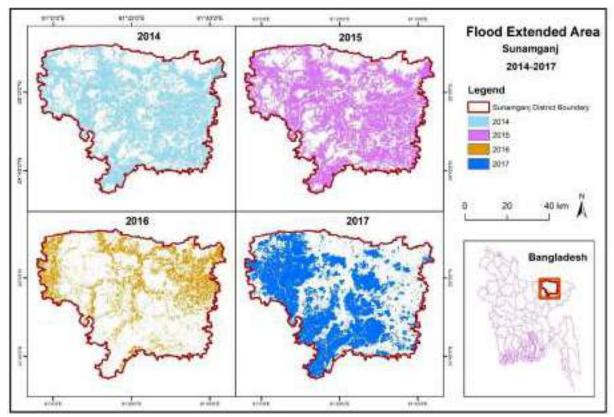

Objective

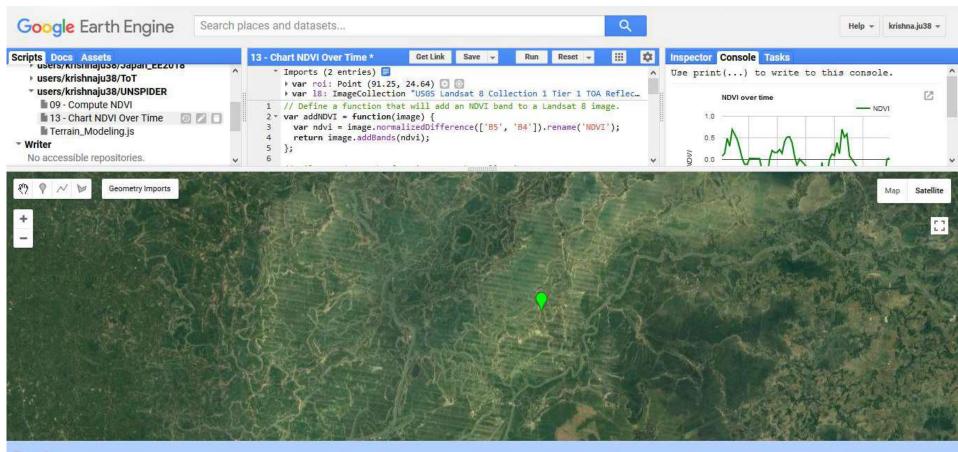
- To stately the true world of terminacheos temperature of Banglacted, or these Strie poster: 2008-2009, 2009, 2019, and 2013, 2018.
- To show the applied statisticities of land surfaces employees or Banghelant, is three time series.


Mathedology

The Reschart of the adopted method of the name is always in Figure 1

Rainfall and Temperature Dynamics




ICIMOD

Flood Monitoring in Bangladesh

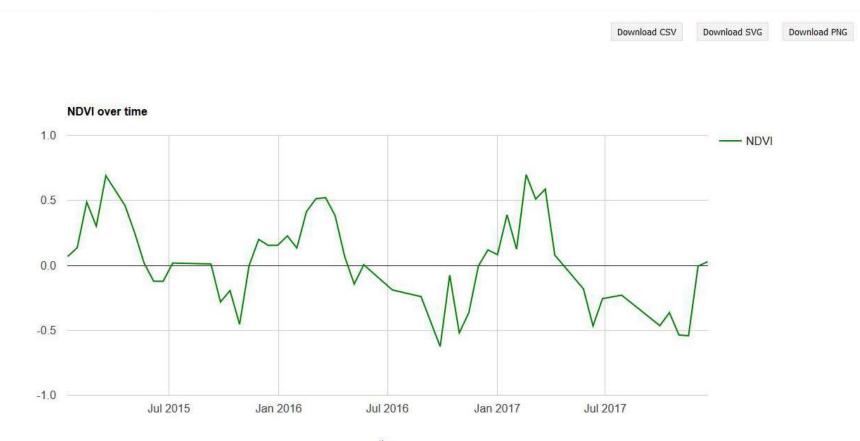
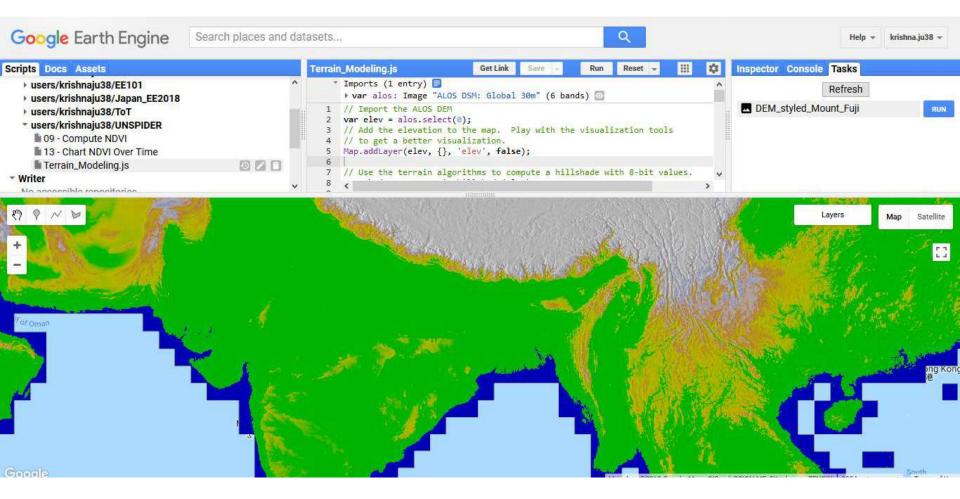


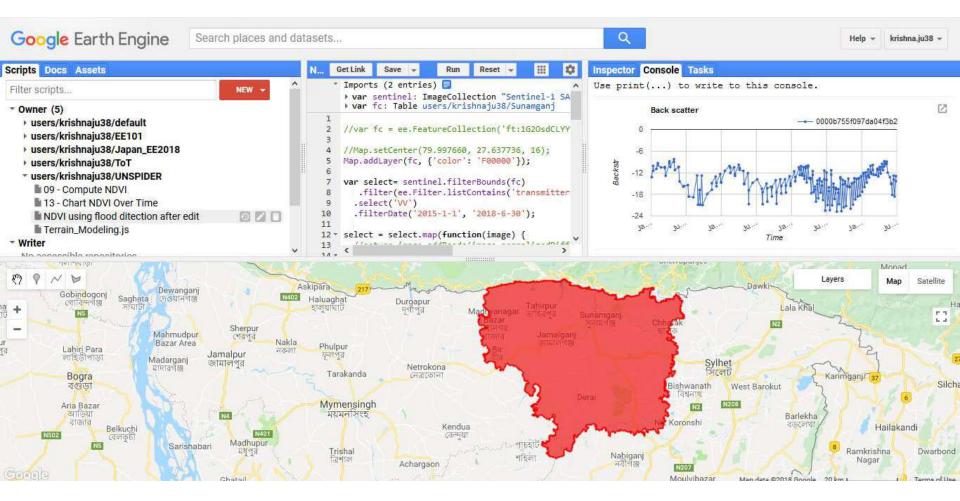
Chart NDVI Over Time

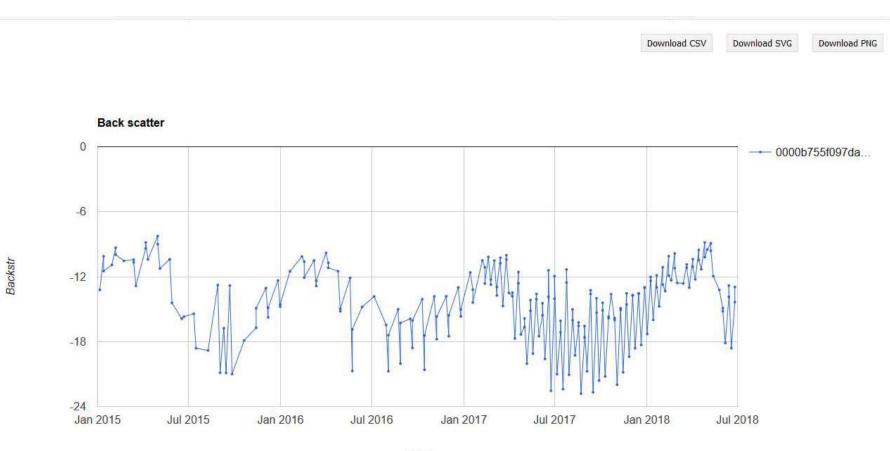
Giorole

Chart NDVI Over Time

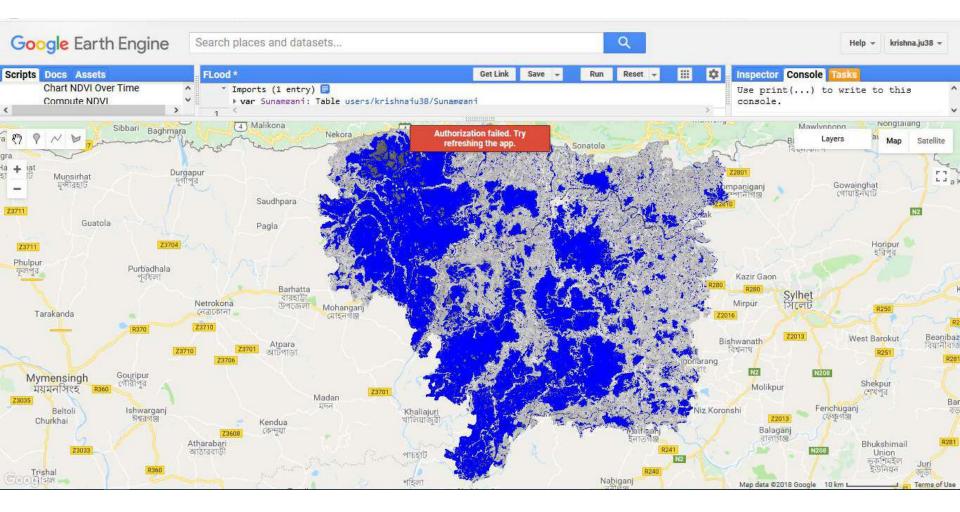

INDNI

Compute NDVI




Terrain Modeling

Terrain Modeling



Terrain Modeling

Time

Flood Monitoring

