Mass Movement

Definition

Mass movements can be defined as as any type of downslope movement of earth materials, such as sediment, soil and rock material. Mass movements are processes of erosion, transport and accumulation of material that occur on both gentle and steep slopes mainly owing to gravitational forces (IRDR Glossary).

These movements are generally associated with other disasters such as earthquakes, floods, thunderstorms and heavy rainstorm. They can be also associated with manmade hazards like construction roads, buildings, structures, infrastructure facilities.

 

Facts and figures

Mass movements occur based on several factors and causes differ depending on different regions. Mass movements are affected by the slope gradient, climate, rock type and structure, physical setting and geological and geomorphological outlines (Advances in Geosciences).

Mass-wasting events come in many shapes, sizes and speeds. Typically, the steeper the angle of a slope, the faster will be the down-slope movement of rock and sediment.  Also, water can play a significant role in mass wasting, sometimes acting as the key component to a mass-wasting event, or serving as a lubricant within a mass of sediment and rock, enabling it to travel faster and further than it would otherwise.

 

One type of mass wasting can evolve into another type of mass wasting as the body of sediment/rock moves down a slope. This can make it difficult to classify a single event as being one type of mass wasting or another (Department of Geological Sciences, California State University).

A simple classification of the different types of mass wasting can be:

  • Falls  (rock fall and rock avalanche)        
  • Slides  (rock slide, landslide and slump)      
  • Flows  (rock avalanche, debris flow, earth flow and creep).

UN-SPIDER Regional Support Offices with hazard-specific expertise

Related content on the Knowledge Portal

  • Publishing institution:
  • After the TAM was conducted in Myanmar, innovative impacts were completed following a recommendation. “Emergency Operation Centre (EOC)”, which is comprised of four units including “Remote Sensing Unit” and “Risk Assessment and Emergency Response Unit” was established in the Ministry of Social Welfare, Relief & Resettlement (MSWRR). The capacity building of MSWRR and other related institutes in remote sensing and GIS were strengthened. The Disaster Management Training Centre now conducts courses in remote sensing/GIS. Myanmar has also become the first country in ASEAN to apply for universal access to the International Charter. Myanmar government is aware of the National Spatial Data Infrastructure (NSDI) and one map policy that has been initiated by the Ministry of Education is very crucial.
     
    read more
  • In order to encourage the targeted retrieval of space-based information and data by disaster risk reduction practitioners, content on the Portal is systematically enriched with metadata. For instance, data sources are marked up with data about their file type, satellite/sensor and spatial coverage and whether they relate to the disaster risk management or emergency response phase. The tool features a range of filters that draw on the metadata, thereby allowing users to narrow down their search, for example, filtering available GIS software by hazard type. This ensures that users efficiently find the content that is most relevant to them. At the same time, the Portal encourages the discovery of resources related to those accessed by the user, by providing links to them on the same page. This allows for contextualisation and highlights links between resources…

    read more
  • Based on optical and radar images of different resolutions, UNOSAT products are also enriched with the available baseline GIS datasets and crowdsourcing data. Satellite-derived analysis performed by UNOSAT is delivered in the form of GIS Data, Static Maps, Live Web Maps, and Reports, and is then shared with a wide range of end-users such as UN Agencies, International Organizations, and Governments.

  • The Global Human Settlement (GHS) framework produces global open source spatial information about the human presence on the planet over time. This is in the form of built up maps, population density maps and settlement maps. This information is generated with evidence-based analytics and knowledge using new spatial data mining technologies. The framework uses heterogeneous data including global archives of fine-scale satellite imagery, census data, and volunteered geographic information. The data is processed fully automatically and generates analytics and knowledge reporting objectively and systematically about the presence of population and built-up infrastructures. 

    read more
  • The guidelines will be reviewed and updated periodically, in order to integrate new best practices and to be responsive to evolutions in technology and end-user needs. The IWG-SEM chair has the responsibility to initiate the review, by agreement of the Working Group. 

    The production and the maintenance of the guidelines are based on a joint effort by the members of the International Working Group on Satellite-based Emergency Mapping (IWG- SEM), a voluntary group of organizations involved in satellite-based emergency mapping. It was founded to improve cooperation, communication and professional standards among the global network of satellite-based emergency mapping providers. The chairperson of the group is nominated for a term of one year and is responsible for organizing the monthly telecons and bi-annual meetings. The current chair is from the Department of Geoinformatics, Z_GIS University of Salzburg / Spatial Services Ltd, Austria…

    read more
  • , , ,

    Intensive capacity development sessions for Pacific island countries  (Cook Islands, Fiji, Kiribati, Micronesia (the Federated States of), Samoa, Solomon Islands, Tonga, and Vanuatu).

    The project aims to enhance institutional and technical capacity for using geospatial data and technology applications and promote regional cooperation for sharing geospatial data for disaster management in Pacific island countries.

    read more
  • , , ,

    Developed for the needs of the ASEAN sub-region in Asia and the Pacific, the handbooks can also be adapted for use in other regions.

    The handbooks have been developed through expert working groups, in collaboration with United Nations partners including UNOOSA/UN-SPIDER, UNITAR-UNOSAT, and OCHA. As well as extensive consultation with space agencies, national disaster management authorities and regional institutions, including GISTDA, LAPAN, ASEAN Coordinating Centre for Humanitarian Assistance on Disaster Management and Asian Institute of Technology.

     

     

    read more
  • , Result of taking rainfall information of the X-band MP radar into GIS (2014.08.20 1:00 and 4:00 ). , Result of taking rainfall information of the X-band MP radar into GIS (2014.08.20 1:00 and 4:00 ).

    Many of the sediment disasters were likely generated by the heavy rain. Sediment danger is alerted to during heavy rainfalls (≥20 mm/h), or when the total rainfall exceeds 100 mm. The new system can analyse the amount of accumulated rainfall, which is important for landslide disaster prevention.

    read more

Term Parents

UN-SPIDER Regional Support Offices with hazard-specific expertise